chung minh rang 1-1/2+1/3-1/4+ +1/2k-1+1/2k=1/k+1+1/k+2+ +1/2k
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LO
0
HK
1
DN
19 tháng 6 2015
Đề sai rồi:
Thay n=2k vào pt trên ta đc:
(n+1)(n-1)(n+3)=(n+4)(n+2)(n+3)
=>(n+1)(n-1)=(n+4)(n+2) (sai rồi)
PQ
0
TG
1
16 tháng 11 2016
khó quá
mk xin lỗi
mk không thể giúp bạn
sory very much
mk mong bạn sẽ k mk
27 tháng 8 2016
Ta có:
N = k4+2k3-16k2-2k+15
=k4+5k3-3k3-15k2-k2-5k+3k+15
=(k3-3k2-k+3)(k+5)
=(k2-1)(k-3)(k+5)
Để \(N⋮16\) thì có nhiều trường hợp xảy ra.
TH1:\(N=0\Leftrightarrow k=\left\{\pm1;3;-5\right\}\)
TH2:Với k lẻ \(\left(k^2-1\right)⋮8\)và cần cm
\(k^2-1=\left(k-1\right)\left(k+1\right)\)
Với k lẻ thì k-1 hoặc k+5 đều chia hết 2
=>N chia hết cho 8*2=16
Vậy \(A⋮16\Leftrightarrow k\) lẻ
\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2k}\right)-2\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{2k}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{k}\right)+\left(\frac{1}{k+1}+\frac{1}{k+2}+..+\frac{1}{2k}\right)-\left(1+\frac{1}{2}+...+\frac{1}{k}\right)=VP\)
có dpcm
tui biet lau oi dang len treu ti