cho \(a.b=m^2\), \(a+b=2\left(m-1\right)\)
biết \(\left(a-b\right)^2+6m=a-2b\)
tìm \(m\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
=1
\(\frac{\left(1-2a\right)\left(1-2b\right)}{\left(1-a\right)\left(1-b\right)}-\frac{4\left(1-a-b\right)^2}{\left(2-a-b\right)^2}=\frac{\left(1-2a\right)\left(1-2b\right)\left(2-a-b\right)^2-4\left(1-a\right)\left(1-b\right)\left(1-a-b\right)^2}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)
\(=\frac{2a^3-2a^2b-3a^2-2ab^2+6ab+2b^3-3b^2}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)
\(=\frac{\left(2a^3-4a^2b+2ab^2\right)+\left(2a^2b-4ab^2+2b^3\right)-3\left(a^2-2ab+3b^2\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)
\(=\frac{2a\left(a^2-2ab+b^2\right)+2b\left(a^2-2ab+b^2\right)-3\left(a^2-2ab+b^2\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)
\(=\frac{\left(a-b\right)^2\left(2a+2b-3\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)
2/ \(a\left(x-a\right)^2+b\left(x-b\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)x^2-2\left(a^2+b^2\right)x+a^3+b^3=0\)
Với a = - b thì x = 0
Với a \(\ne\) - b thì ta có
\(\Delta'=\left(a^2+b^2\right)^2-\left(a+b\right)\left(a^3+b^3\right)=0\)
\(\Leftrightarrow-ab\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b\)
Vậy ta có ĐPCM
Lời giải:
Đặt \(a+b+c=t\)
\(A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)
\(=(2a+2b+2c-3c)^2+(2b+2c+2a-3a)^2+(2c+2a+2b-3b)^2\)
\(=(2t-3c)^2+(2t-3a)^2+(2t-3b)^2\)
\(=4t^2+9c^2-12tc+4t^2+9a^2-12ta+4t^2+9b^2-12tb\)
\(=12t^2+9(a^2+b^2+c^2)-12t(a+b+c)\)
\(=12t^2+9m-12t^2=9m\)
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(A=\left(2a+2b+2c-3c\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)
\(A=\left[2.\left(a+b+c\right)-3c\right]^2+\left[2.\left(a+b+c\right)-3a\right]^2+\left[2.\left(a+b+c\right)-3b\right]^2\)
Đặt \(a+b+c=n\)
\(\Rightarrow A=\left(2n-3c\right)^2+\left(2n-3a\right)^2+\left(2n-3b\right)\)
\(A=4n^2-12cn+9c^2+4n^2-12an+9a^2+4n^2-12bn+9b^2\)
\(A=12n.\left(n-a-b-c\right)+9.\left(a^2+b^2+c^2\right)\)
Ta có: \(a^2+b^2+c^2=m\)
\(\Rightarrow A=12.\left(a+b+c-a-b-c\right)+9m\)
\(A=9m\)
Vậy \(A=9m\)tại \(a^2+b^2+c^2=m\)
Tham khảo nhé~
a) Biểu thức trên không có nghĩa khi \(\left(a-1\right)^2=0\)\(\Leftrightarrow a=1\)
b) Khi \(\orbr{\begin{cases}a-2=0\\b+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\b=-5\end{cases}}\)
c) Khi \(a=0\)hoặc \(a=1\)hoặc \(b=0\)
d) Khi \(ab-a^2=0\)\(\Leftrightarrow a\left(b-a\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=b\end{cases}}\)