K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2020

giúp mình nha người đầu tiên

21 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối BD, ta có AB = AD (gt)

Suy ra ∆ ABD cân tại A

Mà ∠ A = 60 0  ⇒  ∆ ABD đều

⇒  ∠ (ABD) =  ∠ D 1 =  60 0  và BD = AB

Suy ra: BD = BC = CD

⇒ ∆ CBD đều ⇒  ∠ D 2 =  60 0

Xét  ∆ BAM và  ∆ BDN,ta có:

AB = BD ( chứng minh trên)

∠ A =  ∠ D 2  =  60 0

AM = DN (giả thiết)

Do đó  ∆ BAM =  ∆ BDN ( c.g.c) ⇒  ∠ B 1 =  ∠ B 3  và BM = BN

Suy ra ΔBMN cân tại B.

Mà  ∠ B 2 + ∠ B 1  =  ∠ (ABD) =  60 0

Suy ra:  ∠ B 2 +  ∠ B 3  =  ∠ B 2  +  ∠ B 1  = 60° hay  ∠ (MBN) =  60 0

Vậy  ∆ BMN đều

Xét ΔABD có AB=AD và góc A=60 độ

=>ΔABD đều

=>góc ABD=góc ADB=60 độ và AB=AD=BD

Xét ΔBCD có CB=CD và góc C=60 độ

nên ΔBCD đều

=>BD=CB=CD và góc CBD=góc CDB=60 độ

Xét ΔBAM và ΔBDN có

BA=BD

góc BAM=góc BDN

AM=DN

=>ΔBAM=ΔBDN

=>BM=BN và góc ABM=góc DBN

=>góc DBN+góc DBM=60 độ

=>góc MBN=60 độ

=>ΔMBN đều

https://tailieumoi.vn/cau-hoi/hinh-thoi-abcd-co-goc-a-60-do-tren-canh-ad-lay-diem-m-tren-canh-137282.html

Nhắc lần thứ nhất, không copy câu trả lời từ nguồn khác.

30 tháng 6 2017

Hình thoi

a: Xét ΔBAM và ΔBCN có

BA=BC

góc BAM=góc BCN

AM=CN

Do đó: ΔBAM=ΔBCN

=>BM=BN

=>ΔBMN cân tại B

b: DM+MA=DA

DN+NC=DC

mà DA=DC và MA=NC

nên DM=DN

BM=BN

DM=DN

Do đó: BD là trung trực của MN

=>BD vuông góc MN

c: Xét ΔABD có AB=AD và góc A=60 độ

nên ΔABD đều

ΔABD đều có BM là trung tuyến

nên BM là phân giác của góc ABD(1)

Xét ΔCBD có CB=CD và góc C=60 độ

nên ΔCBD đều

ΔCBD đều có BN là trung tuyến

nên BN là phân giác của góc DBC(2)

Từ (1), (2) suy ra góc MBN=1/2(góc ABD+góc CBD)

=1/2*góc ABC

=60 độ

Xét ΔBMN có BM=BN và góc MBN=60 độ

nên ΔBMN đều

=>góc BMN=60 độ

Đặt AM=x; AN=y

MN^2=AM^2+AN^2

=>\(MN=\sqrt{x^2+y^2}\)

\(P_{AMN}=AM+AN+MN=x+y+\sqrt{x^2+y^2}=2a\)

và x+y>=2*căn xy; \(\sqrt{x^2+y^2}>=\sqrt{2xy}\)

=>\(2a=x+y+\sqrt{x^2+y^2}>=2\sqrt{xy}+\sqrt{2xy}\)

=>\(2a>=\sqrt{xy}\left(2+\sqrt{2}\right)\)

=>\(\sqrt{xy}< =\dfrac{2a}{2+\sqrt{2}}\)

=>\(S_{AMN}=\dfrac{1}{2}xy< =\dfrac{1}{2}\cdot\left(\dfrac{2a}{2+\sqrt{2}}\right)^2=\left(3-2\sqrt{2}\right)a^2\)

Dấu = xảy ra khi \(x=y=\left(2-\sqrt{2}\right)a\)