K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2020

\(a=16\)\(\Rightarrow a+1=17\)

Thay \(a+1=17\)vào biểu thức ta được:

\(C=a^4-\left(a+1\right)a^3+\left(a+1\right)a^2-\left(a+1\right)a+2020\)

\(=a^4-a^4-a^3+a^3+a^2-a^2-a+2020\)

\(=-a+2020=-16+2020=2004\)

13 tháng 11 2020

C=2004

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Lời giải:

Đặt $\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=t$

$\Rightarrow a+b=3t; b+c=4t; c+a=5t$

$\Rightarrow a+b+c=\frac{3t+4t+5t}{2}=6t$

$\Rightarrow c=6t-3t=3t; b=6t-5t=t; a=6t-4t=2t$

Khi đó: 

$P=17a-7b-9c+2019=17.2t-7t-9.3t+2019=0.t+2019=2019$

14 tháng 1 2022

Không câu nào đúng trong 4 đáp án trên.

Kết quả là 18.33333333

13 tháng 1 2022

C

4 tháng 7 2016

\(A=97a+35b+86c-17a+45b-6c=\left(97a-17a\right)+\left(35b+45b\right)+\left(86c-6c\right)\)

\(=80a+80b+80c=80.\left(a+b+c\right)=80.100=8000\)=8000

Vậy A=8000

18 tháng 11 2021

C

18 tháng 11 2021

C

 

28 tháng 2 2021

Hình đâu vậy bạn ơii

4 tháng 3 2021

nếu ko có hình thì là tui ko bt à nghen

 

15 tháng 2 2021

Có : ( 16a + 17b ) ( 17a + 16b ) : 11 ( vì 11 là số nguyên tố )

= 16a + 17b : 11

    17a + 16b : 11

=G/s 16a + 17b : 11(1)

Mà ( 16a + 17b ) + ( 17a + 16b ) = ( 33a + 33b ) = 11 ( 3a + 3b ) : 11

= 17a + 16b : 11(2)

Từ ( 1 ) , ( 2 ) = ( 16a + 17b ) ( 17a  +16b ) : 121

15 tháng 2 2021

Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\)

\(\Rightarrow\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)

Giả sử \(16a+17b⋮11\)

\(\Rightarrow16a+17b+17a+16b=\left(16a+17a\right)+\left(17b+16b\right)=33a+33b=33\left(a+b\right)\)

Vì \(33⋮11\) nên \(33\left(a+b\right)⋮11\)

Mà \(16a+17b⋮11\)

\(\Rightarrow17a+16b⋮11\)

Lại có: 11 là số nguyên tố

\(\Rightarrow\left(16a+17b\right)\left(17a+16b\right)⋮11^2=121\)

Vậy \(\left(16a+17b\right)\left(17a+16b\right)⋮121\).

12 tháng 7 2019

O t t' y y' 1 2 3 4

Giải: a) Ta có: \(\widehat{A_1}=\widehat{A_3}\) (đối đỉnh)

mà \(\widehat{A_1}+\widehat{A_3}=100^0\)

=> \(2.\widehat{A_3}=100^0\)

 => \(\widehat{A_3}=100^0:2=50^0\)

Ta lại có: \(\widehat{A_3}+\widehat{A_4}=180^0\)(kề bù)

=> \(\widehat{A_4}=180^0-\widehat{A_3}=180^0-50^0=130^0\)

b) Ta có : \(\widehat{A_1}+\widehat{A_2}=180^0\) (kề bù)

Mà \(\widehat{A_1}-\widehat{A_2}=100^0\)

       => \(2.\widehat{A_1}=280^0\)

     => \(\widehat{A_1}=280^0:2=140^0\)

         => \(\widehat{A_2}=140^0-100^0=40^0\)

Ta lại có: +) \(\widehat{A_1}=\widehat{A_3}\)(đối đỉnh)

Mà \(\widehat{A_1}=140^0\) => \(\widehat{A_3}=140^0\)

+) \(\widehat{A_2}=\widehat{A_4}\) (đối đỉnh)

Mà \(\widehat{A_2}=40^0\) =>  \(\widehat{A_4}=40^0\)

c) Ta có: \(\widehat{A_1}+\widehat{A_4}=180^0\) (kề bù)

=> \(\widehat{A_1}+2.\widehat{A_1}=180^0\)

=> \(3.\widehat{A_1}=180^0\)

 => \(\widehat{A_1}=180^0:3=60^0\) 

     => \(\widehat{A_4}=180^0-60^0=120^0\)

Ta lại có: \(\widehat{A_1}=\widehat{A_3}\) (đối đỉnh)

Mà \(\widehat{A_1}=60^0\) => \(\widehat{A_3}=60^0\)