K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác APBI có

M là trung điểm chung của AB và PI

AB vuông góc với PI

Do đó: APBI là hình thoi

b: Xét tứ giác AMPH có

góc AMP=góc AHP=góc MAH=90 độ

nên AMPH là hình chữ nhật

c: Xét ΔAPK có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAPK cân tại A

=>AC là phân giác của góc KAP(1)

APBI là hình thoi

nên AB là phân giác của góc IAP(2)

Từ (1), (2) suy ra góc KAI=2*90=180 độ

=>K,A,I thẳng hàng

16 tháng 11 2014

c)kẻ độ dài KH cắt NC tại I ,chứng minh I là trung điểm của NC

 

19 tháng 12 2021

ABCMKIP----H

a) Xét tứ giác MKAH ta có:

^MKA=90o (MK_|_AB)

^MHA=90(MC_|_AC)

^KAH=90o (tam giác ABC vuông)

=> MKAH là hình chữ nhật (tứ giác có 3 góc vuông) 

Do đó: AM=HK (hai đường chéo hcn) (đpcm)

b) Vì P đối xứng với M qua H (cmt)

=>MP là đường trung trực của ^AMC

=> tam giác AMC là tam giác cân tại M

Mà MH_|_AC ( vì MH_|_AH)

=> AH là đường cao của tam giác AMC

=> AH là đường trung tuyên của tam giác AMC

=>HA=HC

Vì KM//HA=>KM//HC (1)

    KM=HA (KMHA là hcn) mà HA=HC (cmt)=> KM=HC (2)

Từ (1) và (2) => KMCH là hbh (2 cạnh đối // và = nhau)

=> KH//MC

Mà KH cắt PC tại I => I thuộc KI

=>KI//MC=>HI//MC

Xét tam giác PMC có:

P đối xứng với M qua H => MH=HP => H trung điểm MP

Lại có HI//MC (cmt)

Nên: HI là đường tb của tam giác PMC

=> I trung điểm PC (đpcm)

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng

31 tháng 12 2017

a)  IM // AC, AB \(\perp AC\)

\(\Rightarrow\)IM \(\perp AB\)  \(\Rightarrow\)\(\widehat{AMI}=90^0\)

IN // AB,  AB \(\perp AC\)

\(\Rightarrow\)IN \(\perp AC\)    \(\Rightarrow\)\(\widehat{ANI}=90^0\)

Tứ giác  AMIN  có:  \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)

nên  AMIN  là hình chữ nhật

b)  Hình chữ nhật  AMIN là hình vuông 

\(\Leftrightarrow\)AI  là phân giác  \(\widehat{BAC}\)

mà  AI  đồng thời la trung tuyến của  \(\Delta ABC\)

\(\Rightarrow\)\(\Delta ABC\)vuông cân tại  A

31 tháng 12 2017

bạn ơi. giải dc câu c ko ạ