K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng

20 tháng 12 2018

A B C I N O

20 tháng 12 2018

a) Ta có:

\(IN//AC\left(gt\right)\)

\(AC\perp AB\left(\widehat{A}=90^o\right)\)

\(\Rightarrow IN\perp AB\)\(hay\)\(\widehat{ANI}=90^o\)

\(Cmtt:IM//AB\left(gt\right)\)

\(AB\perp AC\left(\widehat{A}=90^o\right)\)

\(\Rightarrow IN\perp AC\)\(hay\)\(\widehat{AMI}=90^o\)

Xét tứ giác AMIN có:

\(\widehat{A}=\widehat{ANI}=\widehat{AMI}=90^o\)

Do đó tứ giác AMIN là hình chữ nhật

11 tháng 12 2023

a: Xét tứ giác BMNP có

BM//NP

MN//BP

Do đó: BMNP là hình bình hành

b:

Xét ΔABC có

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

Xét tứ giác APCQ có

N là trung điểm chung của AC và PQ

=>APCQ là hình bình hành

c: Xét ΔABC có

N là trung điểm của AC

NP//AB

Do đó: P là trung điểm của CB

Để AQCP là hình thoi thì AP=CP

mà CP=BC/2

nên AP=BC/2

Xét ΔABC có

AP là đường trung tuyến

\(AP=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

b: Xét ΔABC có

E là trung điểm của BA

EM//AC

Do đó: M là trung điểm của BC

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét ΔABC có

E,F lần lượt là trung điểm của AB,AC

=>EF là đường trung bình

=>EF//BC

=>EF//MH

ΔHAC vuông tại H

mà HF là đường trung tuyến

nên \(HF=AF\)

mà AF=ME(AEMF là hình chữ nhật)

nên ME=FH

Xét tứ giác MHEF có MH//EF

nên MHEFlà hình thang

mà ME=FH

nên MHEF là hình thang cân

25 tháng 12 2021

a: Xét tứ giác AMBN có 

Q là trung điểm của AB

Q là trung điểm của MN

Do đó: AMBN là hình bình hành

mà MA=MB

nên AMBN là hình thoi

a: Xét tứ giác ABMC có

E là trung điểm chung của AM và BC

góc BAC=90 độ

Do đó: ABMC là hình chữ nhật

b: Xét ΔBAC có BD/BA=BE/BC

nên DE//AC

=>EN//AC

Xét tứ giác ANEC có

AN//EC

AC//NE

=>ANEC là hình bình hành

15 tháng 1 2022

a) Xét tứ giác AEBN:

+ M là trung điểm của AB (gtt).

+ M là trung điểm của EN (N đối xứng E qua M).

=> Tứ giác AEBN là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: AD là trung tuyến (gt).

=> AD = CD = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Xét tam giác HEC và tam giác DEA:

+ EC = EA (E là trung điểm của AC).

\(\widehat{HEC}=\widehat{DEA}\) (đối đỉnh).

\(\widehat{HCE}=\widehat{DAE}\) (AD // HC).

=> Tam giác HEC = Tam giác DEA (c - g - c).

Xét tứ giác ADCH:

+ AD // HC (gt).

+ AD = HC (Tam giác HEC = Tam giác DEA).

=> Tứ giác ADCH là hình bình hành (dhnb).

Mà AD = CD (cmt).

=> Tứ giác ADCH là hình thoi (dhnb).

 

15 tháng 1 2022

chỗ mà AD = CD (cmt ) cm nằm ở đâu ấy ạ?

 

31 tháng 12 2017

a)  IM // AC, AB \(\perp AC\)

\(\Rightarrow\)IM \(\perp AB\)  \(\Rightarrow\)\(\widehat{AMI}=90^0\)

IN // AB,  AB \(\perp AC\)

\(\Rightarrow\)IN \(\perp AC\)    \(\Rightarrow\)\(\widehat{ANI}=90^0\)

Tứ giác  AMIN  có:  \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)

nên  AMIN  là hình chữ nhật

b)  Hình chữ nhật  AMIN là hình vuông 

\(\Leftrightarrow\)AI  là phân giác  \(\widehat{BAC}\)

mà  AI  đồng thời la trung tuyến của  \(\Delta ABC\)

\(\Rightarrow\)\(\Delta ABC\)vuông cân tại  A

31 tháng 12 2017

bạn ơi. giải dc câu c ko ạ