Cho hình chữ nhật ABCD, Gọi I,K lần lượt là trung điểm của BC,AD.
a) Chứng minh tứ giác AICD là hình thang vuông
b) Chứng minh AICK là hình bình hành
c) Chứng mình 3 đường thẳng AC,BD,IK cùng đi qua 1 điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác là hình chữ nhật (GT)
Suy ra // (hai cạnh đối) nên tứ giác là hình thang.
Mà (góc của hình chữ nhật)
Do đó tứ giác là hình thang vuông.
b) Tứ giác là hình chữ nhật nên // .
Mà , lần lượt là trung điểm của , .
Suy ra // và .
Tứ giác có // và nên tứ giác là hình bình hành (dấu hiệu nhận biết).
c) Gọi là giao điểm của và
Suy ra là trung điểm của và (1) (tính chất đường chéo hình chữ nhật)
Tứ giác là hình bình hành (chứng minh trên).
Suy ra cắt tại trung điểm của (2)
Từ (1) và (2) suy ra là trung điểm của , và .
Hay ba đường thẳng , , cùng đi qua điểm .
Tứ giác là hình chữ nhật (GT)
Suy ra // (hai cạnh đối) nên tứ giác là hình thang.
Mà (góc của hình chữ nhật)
Do đó tứ giác là hình thang vuông.
b) Tứ giác là hình chữ nhật nên // .
Mà , lần lượt là trung điểm của , .
Suy ra // và .
Tứ giác có // và nên tứ giác là hình bình hành (dấu hiệu nhận biết).
c) Gọi là giao điểm của và
Suy ra là trung điểm của và (1) (tính chất đường chéo hình chữ nhật)
Tứ giác là hình bình hành (chứng minh trên).
Suy ra cắt tại trung điểm của (2)
Từ (1) và (2) suy ra là trung điểm của , và .
Hay ba đường thẳng , , cùng đi qua điểm .
a: BI=6/2=3cm
=>\(AI=\sqrt{8^2+3^2}=\sqrt{73}\left(cm\right)\)
\(S_{AICK}=\sqrt{73}\cdot3\left(cm^2\right)\)
b: AICK là hình bình hành
=>AC cắt IK tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,IK,BD đồng quy
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành
a: Xét ΔABD có
E là trung điểm của BA
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành
MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK
Hình:
Giải:
a) Ta có:
\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)
Nên tứ giác BMCO là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)
Tương tự, tứ giác OCND là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)
Suy ra tứ giác BMND là hình bình hành
b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD
Đồng thời BM//AC
Nên AC⊥BD
c) Vì BMCO là hình bình hành nên MC//BD (3)
Và BMND là hình bình hành nên MN//BD (4)
Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)
Vậy ...
a/
Vì ABCD là hcn => BC//AD mà \(CI\in BC\) => CI//AD => AICD là hình thang
Ta có ^ADC=90
=> AIDC là hình thang vuông
b/
\(AK=\frac{AD}{2};CI=\frac{BC}{2};AD=BC\Rightarrow AK=CI\)
\(AK\in AD;CI\in BC\) mà AD//BC => AK//CI
=> AICK là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hình bình hành)
c/
Gọi O là giao của AC và BD => O là trung điểm của AC và BD (AC và BD là hai đường chéo HCN)
Nối KI ta có
AK=DK; BI=CI => KI là đường trung bình của HCN ABCD => KI//CD
Xét tg ACD có
AK=DK
KI//DC
=> KI đi qua trung điểm O của AC (trong 1 tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ hai thì đi qua trung điểm cạnh còn lại)
=> AC, BD, KI cùng đi qua O