K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2020

( 3x - 2 )2 - ( 2x - 3 )2 = 0

⇔ [ ( 3x - 2 ) - ( 2x - 3 ) ][ ( 3x - 2 ) + ( 2x - 3 ) ] = 0

⇔ ( 3x - 2 - 2x + 3 )( 3x - 2 + 2x - 3 ) = 0

⇔ ( x + 1 )( 5x - 5 ) = 0

⇔ x + 1 = 0 hoặc 5x - 5 = 0

⇔ x = ±1

2 tháng 11 2020

Ta có: \(\left(3x-2\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(3x-2\right)^2=\left(2x-3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=2x-3\\3x-2=3-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\5x=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy x = 1 hoặc x = -1

27 tháng 6 2023

Vây \(S=\left\{x|x< \dfrac{15}{7}\right\}\)

lớp 8 chx hc kí hiệu đó anh ạ

a: =>2x-3x^2-x<15-3x^2-6x

=>x<-6x+15

=>7x<15

=>x<15/7

b: =>4x^2-24x+36-4x^2+4x-1>=12x

=>-20x+35>=12x

=>-32x>=-35

=>x<=35/32

6 tháng 3 2020

a) 6x2 - 5x + 3 = 2x - 3x(2 - x)

<=> 6x2 - 5x + 3 = 2x - 6x + 3x2

<=> 6x2 - 5x + 3 = -4x + 3x2

<=> 6x2 - 5x + 3 + 4x - 3x2 = 0

<=> 3x2 - x + 3 = 0

=> Pt vô nghiệm

b) 25x2 - 9 = (5x + 3)(2x + 1)

<=> 25x2 - 9 = 10x2 + 5x + 6x + 3

<=> 25x2 - 9 = 10x2 + 11x + 3

<=> 25x2 - 9 - 10x2 - 11x - 3 = 0

<=> 15x2 - 12 - 11x = 0

<=> 15x2 + 9x - 20x - 12 = 0

<=> 3x(5x + 3) - 4(5x + 3) = 0

<=> (5x + 3)(3x - 4) = 0

<=> 5x + 3 = 0 hoặc 3x - 4 = 0

<=> x = -3/5 hoặc x = 4/3

6 tháng 3 2022

\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)

\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

 

19 tháng 6 2023

\(\left(x+2\right)-2=0\)

\(\Rightarrow x+2-2=0\)

\(\Rightarrow x=0\)

\(\left(x+3\right)+1=7\)

\(\Rightarrow x+3+1=7\)

\(\Rightarrow x+4=7\)

\(\Rightarrow x=3\)

\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)

\(\Rightarrow3x=12\)

\(\Rightarrow x=4\)

\(\left(5x+4\right)-1=13\)

\(\Rightarrow5x+4-1=13\)

\(\Rightarrow5x+3=13\)

\(\Rightarrow5x=10\)

\(\Rightarrow x=2\)

\(\left(4x-8\right)-3=5\)

\(\Rightarrow4x-8-3=5\)

\(\Rightarrow4x-11=5\)

\(\Rightarrow4x=16\)

\(\Rightarrow x=4\)

\(8-\left(2x+4\right)=2\)

\(\Rightarrow8-2x-4=2\)

\(\Rightarrow4-2x=2\)

\(\Rightarrow2x=2\)

\(\Rightarrow x=1\)

\(7+\left(5x+2\right)=14\)

\(\Rightarrow7+5x+2=14\)

\(\Rightarrow9+5x=14\)

\(\Rightarrow5x=5\)

\(\Rightarrow x=1\)

\(5-\left(3x-11\right)=1\)

\(\Rightarrow5-3x+11=1\)

\(\Rightarrow16-3x=1\)

\(\Rightarrow3x=15\)

\(\Rightarrow x=5\)

24 tháng 6 2021

(3x + 5)2 - (2x + 1)2 = 0

<=> (3x + 5 + 2x + 1)(3x + 5 - 2x - 1) = 0

<=> (5x + 6)(x + 4) = 0

<=> \(\orbr{\begin{cases}x=-\frac{6}{5}\\x=-4\end{cases}}\)

Vậy \(x\in\left\{-\frac{6}{5};-4\right\}\)là nghiệm phương trình

24 tháng 6 2021

\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(3x+5+2x+1\right)\left(3x+5-2x-1\right)=0\)

\(\Leftrightarrow\left(5x+6\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=-\frac{6}{5}\)

Vậy tập nghiệm của phương trình là S = { -4 ; -6/5 } 

23 tháng 3 2020

\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=4\\2x=-1\\5x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\x=-\frac{1}{2}\\x=\frac{2}{5}\end{cases}}}\)

Vậy ...

23 tháng 3 2020

Ối ối nhầm rồi :(

\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=4\Leftrightarrow x=\frac{4}{3}\\2x=-1\Leftrightarrow x=-\frac{1}{2}\\5x=2\Leftrightarrow x=\frac{2}{5}\end{cases}}}\)

Vậy ... là nghiệm của pt

8 tháng 7 2016

x=3

b,Dat an 2x^2-3x-1=a la dc

8 tháng 7 2016

a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)

Thế vào rồi giải tiếp em nhé.

20 tháng 9 2020

ngu thế à bạn

a: =>(3x+1)(3x-1)-(3x+1)(2x-3)=0

=>(3x+1)(3x-1-2x+3)=0

=>(3x+1)(x+2)=0

=>x=-1/3 hoặc x=-2

b: =>(3x+1)(6x+2)-(3x+1)(x-2)=0

=>(3x+1)(6x+2-x+2)=0

=>(3x+1)(5x+4)=0

=>x=-1/3 hoặc x=-4/5