Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6x2 - 5x + 3 = 2x - 3x(2 - x)
<=> 6x2 - 5x + 3 = 2x - 6x + 3x2
<=> 6x2 - 5x + 3 = -4x + 3x2
<=> 6x2 - 5x + 3 + 4x - 3x2 = 0
<=> 3x2 - x + 3 = 0
=> Pt vô nghiệm
b) 25x2 - 9 = (5x + 3)(2x + 1)
<=> 25x2 - 9 = 10x2 + 5x + 6x + 3
<=> 25x2 - 9 = 10x2 + 11x + 3
<=> 25x2 - 9 - 10x2 - 11x - 3 = 0
<=> 15x2 - 12 - 11x = 0
<=> 15x2 + 9x - 20x - 12 = 0
<=> 3x(5x + 3) - 4(5x + 3) = 0
<=> (5x + 3)(3x - 4) = 0
<=> 5x + 3 = 0 hoặc 3x - 4 = 0
<=> x = -3/5 hoặc x = 4/3
GIẢI PHƯƠNG TRÌNH :
\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)
giải hộ e vs ạ !!!
e cảm ơn nhìu :3
(3x + 5)2 - (2x + 1)2 = 0
<=> (3x + 5 + 2x + 1)(3x + 5 - 2x - 1) = 0
<=> (5x + 6)(x + 4) = 0
<=> \(\orbr{\begin{cases}x=-\frac{6}{5}\\x=-4\end{cases}}\)
Vậy \(x\in\left\{-\frac{6}{5};-4\right\}\)là nghiệm phương trình
\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(3x+5+2x+1\right)\left(3x+5-2x-1\right)=0\)
\(\Leftrightarrow\left(5x+6\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=-\frac{6}{5}\)
Vậy tập nghiệm của phương trình là S = { -4 ; -6/5 }
Vây \(S=\left\{x|x< \dfrac{15}{7}\right\}\)
lớp 8 chx hc kí hiệu đó anh ạ
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=4\\2x=-1\\5x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\x=-\frac{1}{2}\\x=\frac{2}{5}\end{cases}}}\)
Vậy ...
Ối ối nhầm rồi :(
\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=4\Leftrightarrow x=\frac{4}{3}\\2x=-1\Leftrightarrow x=-\frac{1}{2}\\5x=2\Leftrightarrow x=\frac{2}{5}\end{cases}}}\)
Vậy ... là nghiệm của pt
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
A. 2x (3x-2) - (3x-2)=0
➜\(\left(2x-1\right)\left(3x-2\right)=0\)
➜\(\left[{}\begin{matrix}2x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...................................
B. (x+1) (3-x) +x=0
➜\(3x-x^2+3-x+x=0\)
➜\(3x-x^2=0\)
➜\(x\left(3-x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy.........................V
C. (x-2)^2 = (2x+3)^2
➞\(\left(x-2\right)^2-\left(2x+3\right)^2=0\)
➜\(\left(x-2-2x-3\right)\left(x-2+2x+3\right)=0\)
➜\(\left[{}\begin{matrix}x-2-2x-3=0\\x-2+2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy..................................
D. x^2 -5x+6=0
➜\(x^2-2x-3x+6=0\)
➜\(x\left(x-2\right)-3\left(x-2\right)=0\)
➜\(\left(x-3\right)\left(x-2\right)=0\)
➜\(\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy.....................................
a) \(3x^2-2x=0\)
Phương trình này xác định với mọi x
b)\(\frac{1}{x-1}=3\)
pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)
d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)
e) \(2x=\frac{1}{x^2-2x+1}\)
pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)
\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)
\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)
\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
( 3x - 2 )2 - ( 2x - 3 )2 = 0
⇔ [ ( 3x - 2 ) - ( 2x - 3 ) ][ ( 3x - 2 ) + ( 2x - 3 ) ] = 0
⇔ ( 3x - 2 - 2x + 3 )( 3x - 2 + 2x - 3 ) = 0
⇔ ( x + 1 )( 5x - 5 ) = 0
⇔ x + 1 = 0 hoặc 5x - 5 = 0
⇔ x = ±1
Ta có: \(\left(3x-2\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(3x-2\right)^2=\left(2x-3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=2x-3\\3x-2=3-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\5x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy x = 1 hoặc x = -1