(x2-6x+9):(x-3)-x(x+7)-9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=x^4+6x^3+8x^2\\ b,=x^2+3x-28\\ c,=x^2-3x-x^2+6x-9+9=3x\)
`a,3(x-2)^2+9(x-1)=3(x^2+x-3)`
`<=>3(x^2-4x+4)+9x-9=3x^2+3x-9`
`<=>3x^2-12x+12+9x-9=3x^2+3x-9`
`<=>3x^2-3x+3=3x^2+3x-9`
`<=>6x=12`
`<=>x=12`
`b,(x+3)^2-(x-3)=6x+18`
`<=>(x+3-x+3)(x+3+x-3)+6x+18`
`<=>6.2x=6(x+3)`
`<=>2x=x+3`
`<=>x=3`
`c,(2x+7)^2=9(x+2)^2`
`<=>(2x+7)^2=(3x+6)^2`
`<=>(3x+6-2x-7)(3x+6+2x+7)=0`
`<=>(x-1)(5x+13)=0`
`<=>` $\left[ \begin{array}{l}x-1=0\\5x+13=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=1\\5x=-13\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=1\\x=-\dfrac{13}{5}\end{array} \right.$
a) Ta có: \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)
\(\Leftrightarrow3x^2-12x+12+9x-9-3x^2-3x+9=0\)
\(\Leftrightarrow-6x+12=0\)
\(\Leftrightarrow-6x=-12\)
hay x=2
Vậy: x=2
\(\dfrac{4}{x+3}+\dfrac{x+7}{x^2-9}\)
\(=\dfrac{4\left(x-3\right)+x+7}{x^2-9}\)
\(=\dfrac{4x-12+x+7}{x^2-9}\)
\(=\dfrac{5x-5}{x^2-9}\)
Bài 1:
\(a,\left(x+4\right)\left(x+3\right)-7x=x^2+4x+3x+12-7x=x^2+12\\
b,\left(x+4\right)^2+x-16=x^2+8x+16+x-16=x^2+9x\\
c,\dfrac{4}{x+3}+\dfrac{x+7}{x^2-9}=\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x+7}{\left(x+3\right)\left(x-3\right)}=\dfrac{4x-12+x+7}{\left(x+3\right)\left(x-3\right)}=\dfrac{5x-5}{\left(x+3\right)\left(x-3\right)}\)
Bài 2:
\(7a-7b=7\left(a-b\right)\\
b,x^2-8x+16=\left(x-4\right)^2\\
c,ax-ay+3x-3y=a\left(x-y\right)+3\left(x-y\right)=\left(a+3\right)\left(x-y\right)\\
d,x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
\(\left[\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2\right]:\left(x^2-6x+9\right)=\left[\left(3-x\right)^5-7\left(3-x\right)^4-4\left(3-x\right)^2\right]:\left(3-x\right)^2=\left(3-x\right)^2\left[\left(3-x\right)^3-7\left(3-x\right)^2-4\right]:\left(3-x\right)^2=\left(3-x\right)^3-7\left(3-x\right)^2-4=27-27x+9x^2-x^3-63+42x-7x^2-4=-x^3+2x^2+15x-40\)
\(\dfrac{\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{x^2-6x+9}\)
\(=\dfrac{-\left(x-3\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{\left(x-3\right)^2}\)
\(=-\left(x-3\right)^3-7\left(x-3\right)^2-4\)
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
\(a,\Leftrightarrow6x^2-6x^2-11x+10=-12\\ \Leftrightarrow-11x=-22\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^3+27-x^3-2x=12-5x\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\\ c,\Leftrightarrow x^2-6x-16=0\\ \Leftrightarrow\left(x-8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
a: ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-12\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-12\)
\(\Leftrightarrow-11x=-22\)
hay x=2
b: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+2\right)=12-5x\)
\(\Leftrightarrow x^3+27-x^3-2x+5x=12\)
\(\Leftrightarrow x=-5\)
\(\left(x-3\right)\left(x^2+3x+9\right)-\left(x+2\right)^3+2\left(x+2\right)\left(x^2-2x+4\right)+6x\left(x+2\right)\)
\(=x^3-27-x^3-6x^2-12x-27+2\left(x^3+8\right)+6x^2+12x\)
\(=-54+2x^3+16\)
\(=2x^3-38\)
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(3-2x\right)\left(4x^2+6x+9\right)\)
\(M=\left(x^3+3^3\right)-\left[3^3-\left(2x\right)^3\right]\)
\(M=x^3+27-27+8x^3\)
\(M=9x^3\)
Thay x=20 vào M ta có:
\(M=9\cdot20^3=72000\)
Vậy: ...
\(N=\left(x-2y\right)\left(x^2+2xy+4y^2\right)+16y^3\)
\(N=x^3-\left(2y\right)^3+16y^3\)
\(N=x^3-8y^3+16y^3\)
\(N=x^3+8y^3\)
\(N=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Thay \(x+2y=0\) vào N ta có:
\(N=0\cdot\left(x^2-2xy+4y^2\right)=0\)
Vậy: ...
a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)
a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)
\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)
c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9
= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9
= x - 3 - x2 - 7x - 9
= -x2 - 6x - 12