K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

https://coccoc.com/search?query=%E2%88%9B%28x-20%29%2B%E2%88%9A%28x%2B15%29%3D7

26 tháng 3 2017

do mũ chẵn nên (15-2x)^4=(2x-15)^4

ta có x-7+x-8=2x-15

đặt x-7=a,x-8=b thì 2x-15=a+b

ta có a^4+b^4=(a+b)^4

a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4

suy ra 4a^3b+6a^2b^2+4ab^3=0 

2ab(2a^2+3ab+2b^2)=0

suy ra 2ab=0 hoặc 2a^2+3ab+2b^2=0

ta có 2a^2+3ab+2b^2=0

=2a^2+3ab+9/8b^2+2b^2-9/8b^2

=2(a^2+3/2ab+9/16b^2)+7/8b^2

=2(a+3/4b)^2+7/8b^2>=0

dấu = xảy ra khi a=0,b=0

vậy x-7=0 và x-8=0 TH này ko xảy ra do ko đồng nhất nghiệm 

TH 2ab=0

suy ra a=0 hoặc b=0 hoặc cả a và b = 0

như ta đã ns ở trên thì TH cả a và b =0 ko thỏa mãn 

vậy a=0 hoặc b=0

x-7=0 hoặc x-8=0

x=7 hoặc x=8

26 tháng 3 2017

cảm ơn bạn lần 2 nhé

5 tháng 10 2021

Bài này làm rồi mà bạn?

\(\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-163}{y}=-489\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

2 tháng 2 2021

\(\left\{{}\begin{matrix}\left(x-15\right)\left(y+2\right)=xy\\\left(x+15\right)\left(y-1\right)=xy\end{matrix}\right.\)

\(\left\{{}\begin{matrix}xy+2x-15y-30-xy=0\\xy-x+15y-15-xy=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-15y=30\\-x+15y=15\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-15=30\\3x=45\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=45\\y=4\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (45;4)

2 tháng 2 2021

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\) (ĐK: x,y >0)

\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{3}{x}=18\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{6}{29}\end{matrix}\right.\) (TM)

Vậy HPT có nghiệm (x;y) = (\(\dfrac{1}{6};\dfrac{6}{29}\))

 

16 tháng 1 2019

\(\frac{x-15}{2014}+\frac{x-20}{2019}=\frac{x-5}{2004}+\frac{x+30}{1969}\)

\(\Leftrightarrow\frac{x-15}{2014}+1+\frac{x-20}{2019}+1=\frac{x-5}{2004}+1+\frac{x+30}{1969}+1\)

\(\Leftrightarrow\frac{x-15+2014}{2014}+\frac{x-20+2019}{2019}-\frac{x-5+2004}{2004}-\frac{x+30+1969}{1969}=0\)

\(\Leftrightarrow\frac{x-1999}{2014}+\frac{x+1999}{2019}-\frac{x+1999}{2004}-\frac{x+1999}{1969}=0\)

\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{2014}+\frac{1}{2019}-\frac{1}{2004}-\frac{1}{1969}\right)=0\)

Vì \(\left(\frac{1}{2014}+\frac{1}{2019}-\frac{1}{2004}-\frac{1}{1969}\right)\ne0\)

nên \(x-1999=0\)

\(\Leftrightarrow x=1999\)

16 tháng 1 2019

\(easy!\)(sai đề + sửa đề)

\(\frac{x-5}{2014}+\frac{x-20}{2019}-\frac{x-5}{2004}-\frac{x+3}{1969}=0\)

\(\Leftrightarrow\left(\frac{x-15}{2014}-1\right)+\left(\frac{x-20}{2019}-1\right)-\left(\frac{x-5}{2004}-1\right)-\left(\frac{x-30}{1969}-1\right)=0\)

\(\Leftrightarrow\frac{x-1999}{2014}+\frac{x-1999}{2019}-\frac{x-1999}{2004}-\frac{x-1999}{1969}=0\)

\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{2014}+\frac{1}{2019}-\frac{1}{2004}-\frac{1}{1969}\right)=0\)

dễ dàng cm được \(x-1999=0\)

\(\Leftrightarrow x=1999\)

3 tháng 1 2022

\(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=7y\\20\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{7y}{3}+y}+\dfrac{1}{\dfrac{7y}{3}-y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{10y}{3}}+\dfrac{1}{\dfrac{4y}{3}}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{10y}+\dfrac{3}{4y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{2}\left(\dfrac{1}{5y}+\dfrac{1}{2y}\right)=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{2}{10y}+\dfrac{5}{10y}=\dfrac{7}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{7}{10y}=\dfrac{7}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\10y=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7.3}{3}\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=3\end{matrix}\right.\)

 

 

3 tháng 1 2022

ĐKXĐ:    \(x\ne\pm y\)

Với điều kiện \(x\ne\pm y\) hệ phương trình đã cho 

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)=5\left(x-y\right)\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+y}=\dfrac{2}{x-y}\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

Đặt \(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b\)

ta có hệ phương trình:   \(\left\{{}\begin{matrix}5a=2b\\20a+20b=7\end{matrix}\right.\)

Giải hệ phương trình được \(a=\dfrac{1}{10};b=\dfrac{1}{4}\)

Thay vào hệ ta giải tìm \(x=7;y=3\)

6 tháng 8 2021

ĐK: `x>=0 ; x \ne 25/49`

`(3\sqrtx+1)/(7\sqrtx-5)=8/15`

`<=>15(3\sqrtx+1)=8(7\sqrtx-5)`

`<=>45\sqrtx+15=56\sqrtx-40`

`<=>11\sqrtx=55`

`<=>\sqrtx=5`

`<=>x=25`

Vậy `S={25}`.

Ta có: \(\dfrac{3\sqrt{x}+1}{7\sqrt{x}-5}=\dfrac{8}{15}\)

\(\Leftrightarrow56\sqrt{x}-40-45\sqrt{x}-15=0\)

\(\Leftrightarrow11\sqrt{x}=55\)

hay x=25

a,

ĐK : \(x\ge\frac{-15}{2}\)

Phương trình đã cho tương đương với

\(\sqrt{2x+15}=32x^2+32x-20\)

\(\Leftrightarrow2x+15=\left(32x^2+32x-20\right)^2\)\(\Leftrightarrow1024x^4+2048x^3-256x^2-1282x+385=0\)

Phương trình này có 2 nghiệm  là \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-11}{8}\end{cases}}\) nên dễ dàng có được

⇔ ( 16x2 + 14x − 11 ) ( 64x2 + 72x − 35 ) = 0

Kết hợp với điều kiên bài toán ta có nghiệm của phương trình là \(x=\frac{1}{2};x=\frac{-9-\sqrt{221}}{16}\)

b,\(x^2=\sqrt{2-x}+2\)

ĐK \(x\le2\)

\(PT\Leftrightarrow\sqrt{2-x}=x^2-2\)

\(\Leftrightarrow2-x=\left(x^2-2\right)^2=x^4-4x^2+4\)

\(\Leftrightarrow x^4-4x^2+x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\)

\(x^2-x-1>0\)nên

\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}\left(Tm\right)}}\)

16 tháng 2 2016

ai giải hộ với aaaa

16 tháng 2 2017

Đặt x - 7 = t => x - 8 = t - 1, 15 - 2x = -2t + 1 
thay vào pt được: 
----> t^4 + (t - 1)^4 = (-2t + 1)^4 
<=> t^4 + t^4 - 4t³ + 6t² - 4t + 1 = 16t^4 - 16t³ + 24t² - 8t + 1 
<=> 14t^4 - 12t³ + 18t² - 4t = 0 
<=> t( 14t³ - 12t² + 18t - 4) = 0 
<=> t = 0 hoặc 14t³ - 12t² + 18t - 4 = 0 
+ Với t = 0 => x - 7 = 0 <=> x = 7 
+ Với 14t³ - 12t² + 18t - 4 = 0 --->pt vô no

<=> x-7=7

<=> x=14 

--> S={14}