Chứng minh : \(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-24}{x-9}=\frac{\sqrt{x}+8}{\sqrt{x}+3}\left(x\ge0,x\ne9\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
\(\left(\dfrac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+2}\right)\) : \(\dfrac{1}{\sqrt{x}+2}\)
=\(\dfrac{3x-3\sqrt{x}-3+\sqrt{x}+2-\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}\) .\(\sqrt{x}+2\)
=\(\dfrac{(3x-3\sqrt{x})(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
=\(\dfrac{3\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}\) =\(3\sqrt{x}\)
a/ \(P=\left[1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{9-x+x-4\sqrt{x}+4-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\frac{3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{13-4\sqrt{x}-9x}\)
\(=\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}\)
b/ \(P=1\Rightarrow\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}=1\Rightarrow3\sqrt{x}-6=13-4\sqrt{x}-9x\)
\(\Rightarrow9x+7\sqrt{x}-19=0\)
Mình k biết mình sai chỗ nào nữa, bạn xem giúp mình với