K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

a/ \(P=\left[1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left(\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{9-x+x-4\sqrt{x}+4-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\frac{3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{13-4\sqrt{x}-9x}\)

\(=\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}\)

b/ \(P=1\Rightarrow\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}=1\Rightarrow3\sqrt{x}-6=13-4\sqrt{x}-9x\)

\(\Rightarrow9x+7\sqrt{x}-19=0\)

Mình k biết mình sai chỗ nào nữa, bạn xem giúp mình với

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

\(a,B=\frac{10\sqrt{x}+12+\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x+6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

\(b,C=\frac{x-1}{\sqrt{x}-3}:\frac{\sqrt{x}+3}{\sqrt{x}-3}=\frac{x-1}{\sqrt{x}+3}\)

\(\hept{\begin{cases}x\ge0\\\sqrt{x}+3>0\end{cases}\Rightarrow}x-1\ge-1\)

\(\Rightarrow C_{min}=-1\Leftrightarrow x=0\)

Vậy................

7 tháng 3 2020

Với x = 0 thì C = -1/3 chứ có phải là  -1 đâu .

b) 

Ta có: \(C=\frac{x-1}{\sqrt{x}+3}=\sqrt{x}-3+\frac{8}{\sqrt{x}+3}=\left(\sqrt{x}+3+\frac{9}{\sqrt{x}+3}\right)-6-\frac{1}{\sqrt{x}+3}\)

\(\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{9}{\sqrt{x}+3}}-6-\frac{1}{3}=-\frac{1}{3}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{x}+3=\frac{9}{\sqrt{x}+3}\\x=0\end{cases}}\Leftrightarrow x=0\)

Vậy min C = -1/3 tại  x =0

10 tháng 8 2021

Tui nhầm đề xíu, cái A kia phải là:   A=\(\sqrt{\left(1-\sqrt{5}\right)^2}-\frac{5-2\sqrt{5}}{\sqrt{5}}\)

10 tháng 8 2021

thảo nào rút gọn mãi nó chả mất căn :))

\(A=\sqrt{\left(1-\sqrt{5}\right)^2}-\frac{5-2\sqrt{5}}{\sqrt{5}}\)

\(=\sqrt{5}-1-\frac{5\sqrt{5}-10}{5}=\frac{5\sqrt{5}-5-5\sqrt{5}+10}{5}=\frac{5}{5}=1\)

Với \(x\ge0;x\ne4;9\)

\(P=\left(\frac{3\sqrt{x}+6}{x-4}+\frac{\sqrt{x}}{\sqrt{x}-2}\right):\frac{x-9}{\sqrt{x}-3}\)

\(=\left(\frac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}\right):\left(\sqrt{x}+3\right)\)

\(=\left(\frac{x+5\sqrt{x}+6}{x-4}\right):\left(\sqrt{x}+3\right)=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(x-4\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-2}\)

b, \(2P-A< 0\Rightarrow\frac{2}{\sqrt{x}-2}-1< 0\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-2}< 0\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-2}>0\)

TH1 : \(\hept{\begin{cases}\sqrt{x}-4>0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>16\\x>4\end{cases}\Leftrightarrow x>16}\)

TH2 : \(\hept{\begin{cases}\sqrt{x}-4< 0\\\sqrt{x}-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 16\\x< 4\end{cases}}\Leftrightarrow x< 4}\)

Kết hợp với đk vậy \(0\le x< 4;x>16\)