K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

a) ( x + 1/2 )2 - ( x + 1/2 )( x + 6 ) = 8

⇔ ( x + 1/2 )[ ( x + 1/2 ) - ( x + 6 ) ] = 8

⇔ ( x + 1/2 )( x + 1/2 - x - 6 ) = 8

⇔ ( x + 1/2 ).(-11/2) = 8

⇔ x + 1/2 = -16/11

⇔ x = -43/22

b) ( x2 + 2x )2 - 2x2 - 4x = 3

⇔ ( x2 + 2x )2 - 2( x2 + 2x ) = 3

Đặt t = x2 + 2x

bthuc ⇔ t2 - 2t - 3 = 0

          ⇔ ( t2 - 2t + 1 ) - 4 = 0

          ⇔ ( t - 1 )2 - 22 = 0

          ⇔ ( t - 1 - 2 )( t - 1 + 2 ) = 0

          ⇔ ( t - 3 )( t + 1 ) = 0

          ⇔ ( x2 + 2x - 3 )( x2 + 2x + 1 ) = 0

          ⇔ ( x2 - x + 3x - 3 )( x + 1 )2 = 0

          ⇔ [ x( x - 1 ) + 3( x - 1 ) ]( x + 1 )2 = 0

          ⇔ ( x - 1 )( x + 3 )( x + 1 )2 = 0

          ⇔ x - 1 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0

          ⇔ x = 1 hoặc x = -3 hoặc x = -1

25 tháng 10 2020

thanks

23 tháng 10 2021

\(a,\Leftrightarrow\left(2x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x^3-27-x^3+4x=1\\ \Leftrightarrow4x=28\Leftrightarrow x=7\\ c,\Leftrightarrow4x^2-4x-8=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow2x^2+6x+x+3=0\\ \Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. PT $\Leftrightarrow (3-2x-3-2x)(3-2x+3+2x)=8$

$\Leftrightarrow -4x.6=8$

$\Leftrightarrow -24x=8\Leftrightarrow x=\frac{-1}{3}$

b.

$9x^5-72x^2=0$

$\Leftrightarrow 9x^2(x^3-8)=0$

$\Leftrightarrow x^2=0$ hoặc $x^3=8$

$\Leftrightarrow x=0$ hoặc $x=2$

c.

$5x^4-8x^2-4=0$

$\Leftrightarrow 5x^4-10x^2+2x^2-4=0$

$\Leftrightarrow 5x^2(x^2-2)+2(x^2-2)=0$

$\Leftrightarrow (5x^2+2)(x^2-2)=0$

$\Leftrightarrow 5x^2+2=0$ (loại) hoặc $x^2-2=0$ (chọn)

$\Leftrightarrow x=\pm \sqrt{2}$

d.

PT $\Leftrightarrow [x^2(x+1)-4(x+1)]:(x-2)=0$

$\Leftrightarrow (x^2-4)(x+1):(x-2)=0$

$\Leftrightarrow (x-2)(x+2)(x+1):(x-2)=0$
$\Leftrightarrow (x+2)(x+1)=0$

$\Leftrightarrow x+2=0$ hoặc $x+1=0$

$\Leftrightarrow x=-2$ hoặc $x=-1$

a: Ta có: \(\left(3-2x\right)^2-\left(3+2x\right)^2=8\)

\(\Leftrightarrow9-12x+4x^2-9-12x-4x^2=8\)

\(\Leftrightarrow-24x=8\)

hay \(x=-\dfrac{1}{3}\)

b: Ta có: \(9x^5-72x^2=0\)

\(\Leftrightarrow9x^2\left(x^3-8\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)\left(x^2+2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

24 tháng 10 2023

Dễ

 Thế

Cũnhoir

Dc

Chịu

Chắc

Phải

Ngu 

Lamqs

Mới

Hỏi

Câu

Này

 

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)

31 tháng 7 2021

a) \(\text{5x(x-2)+(2-x)=0}\)

\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\text{x(2x-5)-10x+25=0}\)

\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)

 

31 tháng 7 2021

c) \(\dfrac{25}{16}-4x^2+4x-1=0\)

\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)

\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)

\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)

\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)

\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)

\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)

Bài 1: Thực hiện phép tính:a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)Bài 2: Tìm x, biết:a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị...
Đọc tiếp

Bài 1: Thực hiện phép tính:

a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)

c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)

e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)

Bài 2: Tìm x, biết:

a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13

c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8

Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: a) A = x(2x + 1) – x2 (x + 2) + x3 – x + 3     

b) B = (2x + 11)(3x – 5) – (2x + 3)(3x + 7) + 5 

Bài 4: Tính giá trị của biểu thức

a) A = 2x( 1/2x2 + y) – x(x2 + y) + xy(x3 – 1) tại x = 10; y = – 1 10

b) B = 3x2 (x2 – 5) + x(–3x3 + 4x) + 6x2 tại x = –5

3
17 tháng 9 2021

\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)

 

17 tháng 9 2021

\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)

a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)

\(\Leftrightarrow9x+7=16\)

\(\Leftrightarrow9x=9\)

hay x=1