phân tích đa thức thành nhân tử
( x^2-x+4).(x^2-x+5)-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)
\(=4\left[\left(x+5\right)\left(x+12\right)\right]\left[\left(x+6\right)\left(x+10\right)\right]-3x^2\)
\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)
\(=\left(2x^2+34x+120\right)\left(2x^2+32x+60\right)-3x^2\)
\(=\left(2x^2+33x+120\right)^2-x^2-3x^2\)
\(=\left(2x^2+33x+120-2x\right)\left(2x^2+33x+120+2x\right)\)
\(=\left(2x+15\right)\left(x+8\right)\left(2x^2+35x+120\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
\(4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)
\(=2\left(x^2+60+17x\right).2\left(x^2+60+16x\right)-3x^2\)
\(=\left(2x^2+120+33x+x\right)\left(2x^2+120+33x-x\right)-3x^2\)
\(=\left(2x^2+120+33x\right)^2-x^2-3x^2\)
\(=\left(2x^2+120+33x\right)^2-4x^2\)
\(=\left(2x^2+120+33x+2x\right)\left(2x^2+120+33x-2x\right)\)
\(=\left(2x^2+35x+120\right)\left(2x^2+31x+120\right)\)
\(=\left(2x^2+35x+120\right)\left(x+8\right)\left(2x+15\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
( x2 - x + 4 )( x2 - x + 5 ) - 6
Đặt t = x2 - x + 4
Đa thức đã cho trở thành
t( t + 1 ) - 6
= t2 + t - 6
= t2 - 2t + 3t - 6
= t( t - 2 ) + 3( t - 2 )
= ( t - 2 )( t + 3 )
= ( x2 - x + 4 - 2 )( x2 - x + 4 + 3 )
= ( x2 - x + 2 )( x2 - x + 7 )