K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

a) \(2x+3y=4\Rightarrow x=\frac{4-3y}{2}\)

Lúc đó thì\(2x^2+3y^2=2\left(\frac{4-3y}{2}\right)^2+3y^2=\frac{\left(4-3y\right)^2+6y^2}{2}=\frac{9y^2-24y+16+6y^2}{2}\)\(=\frac{15y^2-24y+16}{2}=\frac{15\left(y^2-\frac{24}{15}+\frac{16}{25}\right)+\frac{32}{5}}{2}=\frac{15\left(y-\frac{4}{5}\right)^2+\frac{32}{5}}{2}\ge\frac{\frac{32}{5}}{2}=\frac{16}{5}\)

Đẳng thức xảy ra khi x = y = 4/5

b) \(3a-5b=8\Rightarrow a=\frac{5b+8}{3}\)

Lúc đó thì \(7a^2+11b^2=7\left(\frac{5b+8}{3}\right)^2+11b^2=\frac{7\left(5b+8\right)^2+99b^2}{9}\)\(=\frac{175b^2+560b+448+99b^2}{9}=\frac{274b^2+560b+448}{9}\)\(=\frac{274\left(b^2+\frac{280}{137}b+\left(\frac{140}{137}\right)^2\right)+\left(448-274.\left(\frac{140}{137}\right)^2\right)}{9}=\frac{274\left(b+\frac{140}{137}\right)^2+\frac{22176}{137}}{9}\ge\frac{2464}{137}\)

Đẳng thức xảy ra khi a = 132/137; b = -140/137

10 tháng 11 2016

Bài 1:

a)Áp dụng Bđt Bunhiacopski ta có:

\(3a^2+4b^2\ge\frac{\left(3a+4b\right)^2}{7}=7\)

b)Áp dụng Bđt Bunhiacopski ta có:

\(\left(3a^2+5b^2\right)\left[\left(\frac{2}{\sqrt{3}}\right)^2+\left(-\frac{3}{\sqrt{5}}\right)^2\right]\ge\left(2a-3b\right)^2=49\)

\(\Rightarrow3a^2+5b^2\ge\frac{735}{47}\)

c)Áp dụng Bđt Bunhiacopski ta có:

\(\left(7a^2+11b^2\right)\left[\left(\frac{3}{\sqrt{7}}\right)^2+\left(\frac{5}{\sqrt{11}}\right)^2\right]\ge\left(\frac{3}{\sqrt{7}}\cdot\sqrt{7}a-\frac{5}{\sqrt{11}}\cdot\sqrt{11}b\right)^2=64\)

\(\Rightarrow\frac{274}{77}\left(7a^2+11b^2\right)\ge64\)

\(\Rightarrow7a^2+11b^2\ge\frac{2464}{137}\)

d)Áp dụng Bđt Bunhiacopski ta có:

\(\left(1^2+2^2\right)\left(a^2+b^2\right)\ge\left(a+2b\right)^2=4\)

\(\Rightarrow a^2+b^2\ge\frac{4}{5}\)

 

 

 

 

 

 

 

 

10 tháng 11 2016

lần sau đăng ít thôi nhé

22 tháng 4 2017

1. Ta có:

\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)

\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)

\(\Leftrightarrow a^2-6ab+9b^2+a^2-6a+9+b^2-2b+1\ge0\)

\(\Leftrightarrow\left(a-3b\right)^2+\left(a-3\right)^2+\left(b-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)

2. Giải:

Ta có: \(2x^2+3y^2+4x=19\)

\(\Leftrightarrow2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\left(1\right)\)

Xét thấy \(VT⋮2\Leftrightarrow3\left(7-y^2\right)⋮2\Leftrightarrow y\) lẻ (2)

Mặt khác \(VT\ge0\Leftrightarrow3\left(7-y^2\right)\ge0\Leftrightarrow y^2\le7\) (3)

Kết hợp (2) và (3) suy ra:

\(y^2=1\) Thay vào \(\left(1\right)\) ta có:

\(2\left(x+1\right)^2=18\). Vậy ta tính được các nghiệm:

\(\left(x,y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;-1\right);\left(-4;1\right)\)

14 tháng 12 2017

\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)

\(\Leftrightarrow2a^2+10b^2-2\left(3a+b\right)\ge6ab-10\)

\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)

\(\Leftrightarrow\left(a^2-6a+9\right)+\left(b^2-2b+1\right)+\left(a^2-6ab+9b^2\right)\ge0\)

\(\Leftrightarrow\left(a-3\right)^2+\left(b-1\right)^2+\left(a-3b\right)^2\ge0\)

\(\Leftrightarrowđcpm\)

Xét \(\hept{\begin{cases}4x^2+z^2\ge4xz\\4y^2+z^2\ge4yz\\2x^2+2y^2\ge4xy\end{cases}}\)

\(\Leftrightarrow2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\)

\(\Leftrightarrow3x^2+3y^2+z^2\ge10\)

dấu bằng xảy ra khi và chỉ khi \(x=y=1\)và \(z=2\)

10 tháng 4 2021
dốt thế lên mà hỏi thầy giáo
HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: x > 1

\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)

e, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)

f, Điều kiện: x > 4

\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

a.

\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)

$\Leftrightarrow 15x^2+10y\vdots 11$

$\Leftrightarrow 15x^2+10y-22y\vdots 11$

$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)

b.

$2x+3y^2\vdots 7$

$\Leftrightarrow 3(2x+3y^2)\vdots 7$

$\Leftrightarrow 6x+9y^2\vdots 7$

$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$

$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)