K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

a) \(2x+3y=4\Rightarrow x=\frac{4-3y}{2}\)

Lúc đó thì\(2x^2+3y^2=2\left(\frac{4-3y}{2}\right)^2+3y^2=\frac{\left(4-3y\right)^2+6y^2}{2}=\frac{9y^2-24y+16+6y^2}{2}\)\(=\frac{15y^2-24y+16}{2}=\frac{15\left(y^2-\frac{24}{15}+\frac{16}{25}\right)+\frac{32}{5}}{2}=\frac{15\left(y-\frac{4}{5}\right)^2+\frac{32}{5}}{2}\ge\frac{\frac{32}{5}}{2}=\frac{16}{5}\)

Đẳng thức xảy ra khi x = y = 4/5

b) \(3a-5b=8\Rightarrow a=\frac{5b+8}{3}\)

Lúc đó thì \(7a^2+11b^2=7\left(\frac{5b+8}{3}\right)^2+11b^2=\frac{7\left(5b+8\right)^2+99b^2}{9}\)\(=\frac{175b^2+560b+448+99b^2}{9}=\frac{274b^2+560b+448}{9}\)\(=\frac{274\left(b^2+\frac{280}{137}b+\left(\frac{140}{137}\right)^2\right)+\left(448-274.\left(\frac{140}{137}\right)^2\right)}{9}=\frac{274\left(b+\frac{140}{137}\right)^2+\frac{22176}{137}}{9}\ge\frac{2464}{137}\)

Đẳng thức xảy ra khi a = 132/137; b = -140/137

14 tháng 12 2017

\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)

\(\Leftrightarrow2a^2+10b^2-2\left(3a+b\right)\ge6ab-10\)

\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)

\(\Leftrightarrow\left(a^2-6a+9\right)+\left(b^2-2b+1\right)+\left(a^2-6ab+9b^2\right)\ge0\)

\(\Leftrightarrow\left(a-3\right)^2+\left(b-1\right)^2+\left(a-3b\right)^2\ge0\)

\(\Leftrightarrowđcpm\)

Xét \(\hept{\begin{cases}4x^2+z^2\ge4xz\\4y^2+z^2\ge4yz\\2x^2+2y^2\ge4xy\end{cases}}\)

\(\Leftrightarrow2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\)

\(\Leftrightarrow3x^2+3y^2+z^2\ge10\)

dấu bằng xảy ra khi và chỉ khi \(x=y=1\)và \(z=2\)

10 tháng 4 2021
dốt thế lên mà hỏi thầy giáo
27 tháng 5 2018

tích đi rồi ta làm

27 tháng 5 2018

Nếu \(x_o\)là nghiệm của phương trình đã cho thì \(x_o\ne0\)

\(x_o^4+ax_o^3+bx_o^2+ax_o+1=0\)

Chia 2 vế cho \(x_o^2\), ta được : 

\(\left(x_o^2+\frac{1}{x_o^2}\right)+a\left(x_o+\frac{1}{x_o}\right)+b=0\)(I) 

Đặt \(t=x_o+\frac{1}{x_o}\)\(\left|t\right|=\left|x_o+\frac{1}{x_o}\right|=\left|x_o\right|+\left|\frac{1}{x_o}\right|\ge2\)

Từ (I) , => \(t^2+at+b-2=0\Rightarrow t^2=-at-b+2\)

Áp dụng BĐT B.C.S ta được : 

\(t^4=\left[at+\left(b-2\right)\right]^2\le\left[a^2+\left(b-2\right)^2\right]\left(t^2+1\right)\)

\(\Rightarrow a^2+\left(b-2\right)^2\ge\frac{t^4}{t^2+1}\)

Mà \(\frac{t^4}{t^2+1}\ge\frac{t^4}{t^2+\frac{t^2}{4}}=\frac{4t^4}{5t^2}=\frac{4}{5}t^2\ge\frac{16}{5}\left(\text{vì}:t^2\ge4\right)\)

Vậy ......