K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 10 2020

\(\overrightarrow{BM}=\overrightarrow{BC}-2\overrightarrow{AB}\Leftrightarrow\overrightarrow{BI}+\overrightarrow{IM}=\overrightarrow{BC}-2\left(\overrightarrow{AC}+\overrightarrow{CB}\right)\)

\(\Leftrightarrow\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IM}=\overrightarrow{BC}-2\overrightarrow{AC}+2\overrightarrow{BC}\Rightarrow\overrightarrow{IM}=\frac{5}{2}\overrightarrow{BC}-2\overrightarrow{AC}\)

\(\overrightarrow{CI}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\Rightarrow-\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{IN}=-\frac{1}{2}\overrightarrow{BC}+x\overrightarrow{AC}=-\frac{1}{5}\left(\frac{5}{2}\overrightarrow{BC}-5x.\overrightarrow{AC}\right)\)

Để MN qua I hay I;M;N thẳng hàng \(\Leftrightarrow5x=2\Rightarrow x=\frac{2}{5}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

4 tháng 1 2021

Gt ⇒ \(2\left|\overrightarrow{MC}+\overrightarrow{MA}+\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

Do G là trọng tâm của ΔABC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)

⇒ VT = 6MG

I là trung điểm của BC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\)

⇒ VP = 6MI

Khi VT = VP thì MG = MI

Vậy tập hợp các điểm M thỏa mãn ycbt là đường trung trực của đoạn thẳng IG

 

NV
26 tháng 12 2020

a.

\(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{BM}\)

b.

\(\overrightarrow{AE}=3\overrightarrow{EM}=3\overrightarrow{EA}+3\overrightarrow{AM}\Rightarrow4\overrightarrow{AE}=3\overrightarrow{AM}\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\overrightarrow{AM}\)

\(\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=-\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}=-\dfrac{5}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=-\overrightarrow{AB}+\dfrac{3}{5}\overrightarrow{AC}=\dfrac{8}{5}\overrightarrow{BE}\)

\(\Rightarrow\) B, E, K thẳng hàng

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)      Ta có:

+) \(\overrightarrow {MB}  = \dfrac{1}{2}\overrightarrow {BC}  \Rightarrow \overrightarrow {MB} \) và \(\overrightarrow {BC} \) cùng hướng; tỉ số độ dài \(\dfrac{{BC}}{{MB}} = 2\)

\( \Rightarrow M\) nằm ngoài đoạn thẳng BC sao cho \(MB = \dfrac{1}{2}BC\)

+) \({\overrightarrow {AN}  = 3\overrightarrow {NB}  \Rightarrow \overrightarrow {AB}  + \overrightarrow {BN}  = 3\overrightarrow {NB}  \Rightarrow 4\overrightarrow {NB}  = \overrightarrow {AB}  \Leftrightarrow \overrightarrow {NB}  = \dfrac{1}{4}\overrightarrow {AB} }\)

\( \Rightarrow N\) thuộc đoạn thẳng AB và \(NB=\dfrac{{1}}{{4}} AB\)

+) \(\overrightarrow {CP}  = \overrightarrow {PA}  \Leftrightarrow \overrightarrow {PC}  + \overrightarrow {PA}  = \overrightarrow 0 \)

\( \Rightarrow P\) là trung điểm của CA

 

b) \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BN}  = \frac{1}{2}\overrightarrow {BC}  + \frac{1}{4}\overrightarrow {BA} \)

\(\begin{array}{l}\overrightarrow {MP}  = \overrightarrow {MC}  + \overrightarrow {CP}  = \overrightarrow {MC}  + \frac{1}{2}\overrightarrow {CA}  \\= \frac{3}{2}\overrightarrow {BC}  + \frac{1}{2}\left( {\overrightarrow {BA}  - \overrightarrow {BC} } \right)\\ = \overrightarrow {BC}  + \frac{1}{2}\overrightarrow {BA} \end{array}\)

c) Ta có:

\(\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {BC}  + \frac{1}{4}\overrightarrow {BA} ;\) \(\overrightarrow {MP}  = \overrightarrow {BC}  + \frac{1}{2}\overrightarrow {BA} \)

\( \Rightarrow \overrightarrow {MP}  = 2\overrightarrow {MN} \)

Vậy \(M,N,P\) thẳng hàng

16 tháng 5 2017

A B C D I M
a)
\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=\dfrac{1}{2}\left(\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\).
b)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+x\overrightarrow{BC}\)\(=\overrightarrow{AB}+x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\left(1-x\right)\overrightarrow{AB}+x\overrightarrow{AC}\).
c) A, M, I thẳng hàng khi và chỉ khi hai véc tơ \(\overrightarrow{AM};\overrightarrow{AI}\) cùng phương
hay \(\dfrac{1-x}{\dfrac{1}{2}}=\dfrac{x}{\dfrac{3}{8}}\Leftrightarrow\dfrac{3}{8}\left(1-x\right)=\dfrac{1}{2}x\)
\(\Leftrightarrow\dfrac{7}{8}x=\dfrac{3}{8}\)\(\Leftrightarrow x=\dfrac{3}{7}\).