- Tốc độ của 1 chiếc cannô vàđộ dài đường sóng nước để lại sau đuôi của nó được cho bởi công thức v=5\(\sqrt{l}\) . Trong đó,l là độ dài đường nước sau đuôi cannô( mét), v là vận tốc canno (m/giây).Hỏi cannô đi từ Nam Căn về huyện đất Mũi (Cà Mau) để lại đường sóng nươcsau đuôi dài 7+4\(\sqrt{3}\) m. Thì có vận tốc là bn?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \({x_0}\) bất kì, ta có:
\(f'\left( {{t_0}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{19,6t - 4,9{t^2} - 19,6{t_0} + 4,9t_0^2}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \frac{{ - 4,9\left( {{t^2} - t_0^2} \right) + 19,6\left( {t - {t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( { - 4,9t - 4,9{t_0} + 19,6} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( { - 4,9t - 4,9{t_0} + 19,6} \right) = - 9,8{t_0} + 19,6\)
Vậy hàm số \(h = 19,6t - 4,9{t^2}\) có đạo hàm là hàm số \(h' = - 9,8{t_0} + 19,6\)
Độ cao của vật khi nó chạm đất thỏa mãn \(19,6t - 4,9{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 4\end{array} \right.\)
Khi t = 4, vận tốc của vật khi nó chạm đất là \( - 9,8.4 + 19,6 = - 19,6\) (m/s)
Vậy vận tốc của vật khi nó chạm đất là 19,6 m/s.
Đáp án B
Ta có
Xét điểm N là bụng sóng.
Từ vòng tròn lượng giác thời gian để N đi từ biên âm về vị trí cân bằng là
Vậy và đây cũng là biên ođọ dao động của M.
Tốc độ dao động cực đại của M là
.
a)
Vận tốc rơi của viên sỏi lúc `t=2`:
$v(2) = 9,8 \cdot 2 = 19.6 , \text{m/s}$
b)
Khi viên sỏi chạm đất, quãng đường rơi sẽ bằng độ cao ban đầu:
$s(t) = 4.9t^2 = 44.1$
Giải phương trình trên, ta có:
$t^2 = \frac{44.1}{4.9}$
$t \approx 3,0 \text{giây}$
$v(3.0) = 9,8 \cdot 3,0 = 29,4 \text{m/s}$
Vậy vận tốc của viên sỏi khi chạm đất là $29,4 \text{m/s}$.
a: v(t)=s'(t)=4,9*2t=9,8t
Khi t=2 thì v(2)=9,8*2=19,6(m/s)
b: Quãng đường đi được là 44,1m
=>4,9t^2=44,1
=>t=3
Khi t=3 thì v(3)=9,8*3=29,4(m/s)
Đáp án B
Ta có f = v λ = v L ⇒ ω = 2 π f = 2 π v L = 2 π 120 60 = 4 π r a d / s
Xét điểm N là bụng sóng
Từ vòng tròn lượng giác thời gian để N đi từ biên âm về vị trí cân bằng là 3 Δ t = T 4 ⇒ Δ t = T 12
Vậy x = 2 a 3 2 = a 3 = 2 3 c m và đây cũng là biên độ dao động của M
Tốc độ dao động cực đại của M là v max = A M ω = 8 π 3 c m / s
Để giải bài toán này, ta sử dụng hai công thức sau:
Quãng đường chuyển động của vật rơi tự do: S = 5t²
Vận tốc của vật rơi tự do: V = 9,8t
Để tìm thời điểm vận động viên phải bật dù, ta cần tính thời gian mà vận động viên rơi từ độ cao 3970m đến cách mặt đất 845m:
Đầu tiên, ta tính quãng đường rơi của vận động viên: 3970 m - 845 m = 3125 m
Sau đó, ta sử dụng công thức quãng đường chuyển động của vật rơi tự do để tính thời gian rơi của vận động viên từ độ cao 3125m: S = 5t² 3125 = 5t² t² = 625 t = 25 giây
Vậy sau 25 giây từ lúc bắt đầu nhảy, vận động viên phải bật dù.
Để tính vận tốc rơi của vận động viên tại thời điểm cách mặt đất 845m, ta sử dụng công thức vận tốc của vật rơi tự do:
V = 9,8t
Ta thấy được rằng tại thời điểm cách mặt đất 845m, thời gian rơi của vận động viên là: S = 5t² 845 = 5t² t² = 169 t = 13 giây
Vậy sau 13 giây từ lúc bắt đầu nhảy, vận động viên cách mặt đất 845m và vận tốc rơi của vận động viên là: V = 9,8t = 9,8 x 13 = 127,4 (m/s)
Vậy sau 13 giây từ lúc bắt đầu nhảy, vận tốc rơi của vận động viên là 127,4 (m/s).