\(x=\sqrt[3]{15+3\sqrt{22}}+\sqrt[3]{15-3\sqrt{22}}\) tính gt biểu thức \(D=x^3-9x+1981\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Thay x=0 vào A, ta được:
\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)
\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)
\(=\dfrac{11}{3}-2-1\)
\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)
\(P=\dfrac{-x+5\sqrt{x}-22}{x+2\sqrt{x}-15}+\dfrac{3\sqrt{x}-1}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\)
\(=\dfrac{-x+5\sqrt{x}-22}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{3\sqrt{x}-1}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\)
\(=\dfrac{-x+5\sqrt{x}-22+\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x+5\sqrt{x}-22+3x-10\sqrt{x}+3-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-5\sqrt{x}+6}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+5}\)
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
\(x=\dfrac{\sqrt[3]{\left(2+\sqrt{3}\right)^3}\left(2-\sqrt{3}\right)}{\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}}=\dfrac{1}{\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}}\)
Đặt \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)\(\Leftrightarrow A^3=18+3\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow A^3=18+3A\sqrt[3]{1}\\ \Leftrightarrow A^3-3A-18=0\\ \Leftrightarrow A=3\\ \Leftrightarrow X=\dfrac{1}{3}\\ \Leftrightarrow Q=\left[3\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^2-1\right]^{2021}=\left(\dfrac{1}{9}-\dfrac{1}{9}-1\right)^{2021}=\left(-1\right)^{2021}=-1\)
GiáTrị của Biểu thức là:
\(\left(-3\right)\sqrt{2}\sqrt{11}\sqrt{g}\sqrt{t}+3\sqrt{2}\sqrt{11}+2\sqrt{3^3}\sqrt{5}\)
Ta có:\(x=\sqrt[3]{15+3\sqrt{22}}+\sqrt[3]{15-3\sqrt{22}}\Rightarrow x^3=\left(\sqrt[3]{15+3\sqrt{22}}\right)^3+\left(\sqrt[3]{15-3\sqrt{22}}\right)^3+3\sqrt[3]{\left(15+3\sqrt{22}\right)\left(15-3\sqrt{22}\right)}\left(\sqrt[3]{15+3\sqrt{22}}+\sqrt[3]{15-3\sqrt{22}}\right)\)\(\Rightarrow x^3=15+3\sqrt{22}+15-3\sqrt{22}+3\sqrt[3]{27}x\Rightarrow x^3=30+9x\Rightarrow x^3-9x+1981==2011\)