K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 10 2021

\(B=-3x^2-12x-8=-3\left(x^2+4x+4\right)+4=-3\left(x+2\right)^2+4\le4\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

28 tháng 10 2021

B=-3x^2-12x-8

Ta có:-3x^2-12x-8

=-(3x^2+2.3x.2+4)+4

=-(3x+2)^2+4

Vì : (3x+2)^2 > 0

=> -(3x+2)^2 < 0

=>-(3x+2)^2+4< 4

Dấu '=' xảy ra khi (3x+2)^2=0

=>3x+2=0

=>3x=0-2

=>3x=-2

=>x=-2/3

Vậy Bmin=4 khi x=-2/3

3 tháng 9 2021

a) \(A=\sqrt{1-x}+\sqrt{1+x}\)

\(\Rightarrow A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{1-x^2}\)

Do \(-x^2\le0\Rightarrow1-x^2\le1\Rightarrow A^2=2+2\sqrt{1-x^2}\le2+2=4\)

\(\Rightarrow A\le2\)

 

\(maxA=2\Leftrightarrow x=0\)

Áp dụng bất đẳng thức: \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(với \(x,y\ge0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow x+y+2\sqrt{xy}\ge x+y\Leftrightarrow2\sqrt{xy}\ge0\left(đúng\right)\)

\(A=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(maxA=\sqrt{2}\Leftrightarrow\)\(\left[{}\begin{matrix}1-x=0\\1+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

3 tháng 9 2021

Cho mình sửa dòng cuối là \(minA=\sqrt{2}\) nhé

21 tháng 12 2017

16+5y-y2 = -y2\(=-y^2+2.\frac{5}{2}.y-\frac{25}{4}+\frac{89}{4}=\frac{89}{4}-\left(y-\frac{5}{2}\right)^2\)

ta thấy \(\left(y-\frac{5}{2}\right)^2\ge0\)

Suy ra 16+5y-y2 lớn nhất là bằng 89/4  khi và chỉ khi y - 5/2 = 0  <=> y = 5/2

21 tháng 12 2017

nếu y càng lớn thì kết quả sẽ càng nhỏ

vi 5y<y\(^2\)

\(\Rightarrow y^{^2}=0\)

\(\Rightarrow y=o\)

thay y =0 vào biểu thức ta có

16+5*0-0^2=16

vay GTLN la 16

NV
26 tháng 7 2021

Câu này em đã hỏi rồi

1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2    với x ≠ 22. Tìm GTLN của Bthức: C= x2 + 4x - 14  : x2 -2x +1  với x≠ 1gi... - Hoc24

7 tháng 10 2021

1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)

\(maxP=18\Leftrightarrow x=-3\)

2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)

\(maxQ=5\Leftrightarrow x=1\)

3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)

\(maxA=6\Leftrightarrow x=2\)

4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)

\(maxB=84\Leftrightarrow x=-6\)

b: Ta có: \(B=-2x^2+4x+1\)

\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)

\(=-2\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

29 tháng 10 2020

a) ( x+ 3 ) ( x - 3 ) = 3 ( x-3)

x+ 3 =3

x =0

29 tháng 10 2020

a) x2 - 9 = 3( x - 3 )

⇔ ( x - 3 )( x + 3 ) - 3( x - 3 ) = 0

⇔ ( x - 3 )( x + 3 - 3 ) = 0

⇔ ( x - 3 ).x = 0

⇔ x - 3 = 0 hoặc x = 0

⇔ x = 3 hoặc x = 0

b) 3( 3x2 + 1 ) = 6 - 2( 3x + 2 )

⇔ 9x2 + 3 = 6 - 6x - 4

⇔ 9x2 + 6x + 3 - 6 + 4 = 0

⇔ 9x2 + 6x + 1 = 0

⇔ ( 3x + 1 )2 = 0

⇔ 3x + 1 = 0

⇔ x = -1/3

Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x

          l 2y -3l lớn hơn hoặc bằng 0, với mọi y

=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y

=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5

=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5

=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4

Vậy max Q = 4

Dẫu "=" xảy ra <=> x = -1 ; y = 3/2

Chúc bạn học tốt!

8 tháng 8 2023

Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x

          l 2y -3l lớn hơn hoặc bằng 0, với mọi y

=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y

=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5

=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5

=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4

Vậy max Q = 4

Dẫu "=" xảy ra <=> x = -1 ; y = 3/2