K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

16+5y-y2 = -y2\(=-y^2+2.\frac{5}{2}.y-\frac{25}{4}+\frac{89}{4}=\frac{89}{4}-\left(y-\frac{5}{2}\right)^2\)

ta thấy \(\left(y-\frac{5}{2}\right)^2\ge0\)

Suy ra 16+5y-y2 lớn nhất là bằng 89/4  khi và chỉ khi y - 5/2 = 0  <=> y = 5/2

21 tháng 12 2017

nếu y càng lớn thì kết quả sẽ càng nhỏ

vi 5y<y\(^2\)

\(\Rightarrow y^{^2}=0\)

\(\Rightarrow y=o\)

thay y =0 vào biểu thức ta có

16+5*0-0^2=16

vay GTLN la 16

7 tháng 3 2020

5x2 + 8xy + 5y2 = 72

<=> 5x2 + 10xy + 5y2 - 2xy = 72

<=> 5(x2 + 2xy + y2) - 2xy = 72

<=> 5(x + y)2 - 2xy = 72

<=> -2xy = 72 - 5(x + y)2

A = x2 + y2 = (x + y)2 - 2xy

= (x + y)2 + 72 - 5(x + y)2 

= 72 - 4(x + y)2

(x + y)2 > 0 => -4(x + y)2 < 0

=> A < 72

dấu "=" xảy ra khi : x +  y = 0 <=> x = -y

DD
28 tháng 10 2021

\(B=-3x^2-12x-8=-3\left(x^2+4x+4\right)+4=-3\left(x+2\right)^2+4\le4\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

28 tháng 10 2021

B=-3x^2-12x-8

Ta có:-3x^2-12x-8

=-(3x^2+2.3x.2+4)+4

=-(3x+2)^2+4

Vì : (3x+2)^2 > 0

=> -(3x+2)^2 < 0

=>-(3x+2)^2+4< 4

Dấu '=' xảy ra khi (3x+2)^2=0

=>3x+2=0

=>3x=0-2

=>3x=-2

=>x=-2/3

Vậy Bmin=4 khi x=-2/3

12 tháng 9 2015

=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0

còn lại thì e bó tay . canh 

12 tháng 9 2015

(x+2y)(x2-2xy+4y2)=0

<=>x3+(2y)3=0

<=>x3+8y3=0  (1)

(x-2y)(x2+2xy+4y2)=0

<=>x3-(2y)3=0

<=>x3-8y3=0  (2)

từ (1) và (2)=>x3+8y3-x3+8y3=0

<=>16y3=0

<=>y=0

thay y=0 vào (1) ta đc:

x3-0=0

<=>x3=0

<=>x=0

16 tháng 12 2015

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Vì      \(\left(x+y\right)^2\ge0;\left(x-1\right)^2\ge0;\left(y+1\right)^2\ge0\)

Để    \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow y+1=0\Rightarrow y=-1\)

\(\Leftrightarrow x-1=0\Rightarrow x=1\)

Vậy    \(x=1; y=-1\)

 

 

15 tháng 8 2018

a) \(A=x^2-2.10x+100+1\)

\(A=\left(x-10\right)^2+1>=1\)với mọi x

Dấu = xảy ra khi x-10 =0

                           =>x=10

Min A=1 khi x=10

b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3  mới làm dc

15 tháng 8 2018

a)A= \(\left(x^2-2.x.10+100\right)+1\)

=\(\left(x-10\right)^2+1>=1\)

Dấu "=" xảy ra <=> \(\left(x-10\right)^2=0\)<=> \(x-10=0\)<=>\(x=10\)

Vậy MinA = 1 khi x=10

18 tháng 7 2017

Ta có A=3-2(3x+1)2

Lại có 2(3x+1)2 lớn hơn hoặc bằng 0

=> 3-2(3x+1) bé hơn hoặc bằng 3

Dấu "=" xảy ra khi

2(3x+1)2=0

=>x=(-1/3)

Vậy GTLN của A=3 khi x=(-1/3)

\(A=3-2\left(3x+1\right)^2\le3\)

\(Max_A=3\Leftrightarrow3x+1=0\)

\(\Rightarrow x=\frac{-1}{3}\)

15 tháng 8 2019

\(x^3-x+y^3-y=x^3+y^3-x-y=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

\(x^2-x-y^2-y=x^2-y^2-x-y=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)