K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hàm số đồng biến thì (k-6)(k+1)>0

=>k>6 hoặc k<-1

b: Để hàm số nghịch biến thì \(2k^2+4k-k-2< 0\)

=>(k+2)(2k-1)<0

=>-2<k<1/2

18 tháng 7 2023

Em muốn nhanh thì em chia nhỏ câu hỏi ra để nhiều người trợ giúp cùng một lúc như vậy hiệu quả cao, chi tiết và nhanh chóng em nhé.

30 tháng 7 2020

Hỏi đáp Tin học

a: Để hàm số đồng biến thì (k-6)(k+1)>0

=>k>6 hoặc k<-1

b: Để hàm số nghịch biến thì (k+2)(2k-1)<0

=>-2<k<1/2

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

$f(x)=x^2+ax+b$

$f(f(x)+x)=[f(x)+x]^2+a[f(x)+x]+b$

$=f(x)^2+x^2+2xf(x)+af(x)+ax+b$

$=f(x)^2+2xf(x)+af(x)+f(x)$

$=f(x)[f(x)+2x+a+1]$

$=f(x)(x^2+ax+b+2x+a+1)$

$=f(x)[(x+1)^2+a(x+1)+b]=f(x)f(x+1)$

Thay $x=2019$ vô thì:

$f(f(2019)+2019)=f(2019).f(2020)$. Do đó tồn tại số $k=f(2019)+2019\in\mathbb{Z}$ thỏa mãn đkđb. 

Ta có đpcm.