K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

$f(x)=x^2+ax+b$

$f(f(x)+x)=[f(x)+x]^2+a[f(x)+x]+b$

$=f(x)^2+x^2+2xf(x)+af(x)+ax+b$

$=f(x)^2+2xf(x)+af(x)+f(x)$

$=f(x)[f(x)+2x+a+1]$

$=f(x)(x^2+ax+b+2x+a+1)$

$=f(x)[(x+1)^2+a(x+1)+b]=f(x)f(x+1)$

Thay $x=2019$ vô thì:

$f(f(2019)+2019)=f(2019).f(2020)$. Do đó tồn tại số $k=f(2019)+2019\in\mathbb{Z}$ thỏa mãn đkđb. 

Ta có đpcm.

 

5 tháng 12 2020

Ta có: \(f\left(x\right)=x^2+px+q\)

\(\Rightarrow f\left(f\left(x\right)+x\right)=\left(f\left(x\right)+x\right)^2+p\left(f\left(x\right)+x\right)+q\)

\(=f\left(x\right)^2+2f\left(x\right).x+x^2+p.f\left(x\right)+p.x+q\)

\(=f\left(x\right)^2+2f\left(x\right).x+p.f\left(x\right)+\left(x^2+p.x+q\right)\)

\(=f\left(x\right)^2+2f\left(x\right).x+p.f\left(x\right)+f\left(x\right)\)

\(=f\left(x\right).\left(f\left(x\right)+2x+p+1\right)=f\left(x\right).\left(x^2+px+q+2x+p+1\right)\)

\(=f\left(x\right).\left(\left(x+1\right)^2+\left(x+1\right)p+q\right)=f\left(x\right).f\left(x+1\right)\)

Vậy tồn tại số nguyên k để f(k) = f(2008).f(2009) ( Chọn x = 2018 thì \(k=f\left(2018\right)+2018\))

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Bạn tham khảo lời giải tại đây:

Cho đa thức f(x) = x^2+ax+b(a,b thuộc Z).Chứng minh rằng tồn tại số nguyên tố k để f(x) = f(2019).f(2020) - Hoc24

21 tháng 12 2019

hahagiúp mk nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaayeu