K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

A=x+2019/x thì lm sao tìm đc GTLN

12 tháng 4 2019

tui biết GTLN của nó là \(\frac{2019}{2}\)nhưng ko bt lm

12 tháng 5 2019

\(A=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left[x-2+\frac{10-x^2}{x+2}\right]\) ĐKXĐ : \(x\ne0;x\ne\pm2\)

\(A=\left[\frac{x^2}{x\left(x+2\right)\left(x-2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\left[\frac{3x^2}{3x\left(x+2\right)\left(x-2\right)}-\frac{6x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}+\frac{3x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}\right]:\frac{6}{x+2}\)

\(A=\left[\frac{3x^2-6x^2-12x+3x^2+6x}{3x\left(x+2\right)\left(x-2\right)}\right].\frac{x+2}{6}\)

\(A=\frac{-x}{3x\left(x-2\right)}\)

\(A=\frac{-1}{3x-6}\)

2 tháng 9 2016

ĐKXĐ : \(x\ne\pm1\)

a/ \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\)

\(=\frac{x^2+2x+1-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}:\frac{2-x\left(x+1\right)+\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-x^2}=\frac{4x}{1-x^2}\)

b/ Ta có \(3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\Rightarrow\sqrt{3+\sqrt{8}}=\sqrt{2}+1\)

Suy ra : Nếu x = \(\sqrt{2}+1\) thì \(A=\frac{4\left(\sqrt{2}+1\right)}{1-\left(\sqrt{2}+1\right)^2}=\frac{4\left(\sqrt{2}+1\right)}{-\sqrt{2}.\sqrt{2}\left(\sqrt{2}+1\right)}=-\frac{4}{2}=-2\)

c/ \(A=\sqrt{5}\Rightarrow4x=\sqrt{5}\left(1-x^2\right)\Leftrightarrow\sqrt{5}x^2+4x-\sqrt{5}=0\)

Nhân cả hai vế của pt trên với \(\sqrt{5}\ne0\)

Được \(5x^2+4\sqrt{5}x-5=0\) . Đặt \(t=x\sqrt{5}\) pt trở thành \(t^2+4t-5=0\Leftrightarrow\left(t+5\right)\left(t-1\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=1\\t=-5\end{array}\right.\)

Với t = 1 thì \(x=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

Với t = -5 thì \(x=-\frac{5}{\sqrt{5}}=-\sqrt{5}\)

1 tháng 9 2016

\(A=\left[\frac{x^2+2x+1-x^2+2x-1}{x^2-1}\right]:\left[\frac{2-x^2-x+x-1}{x^2-1}\right]=\left[\frac{4x}{x^2-1}\right].\left[\frac{x^2-1}{1-x^2}\right]=\frac{4x}{1-x^2}\)

Ai giải giúp mấy bài toán vsBài 1:A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)Bài 2 rút gọn biểu thứcA=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)Bài 3 cho biểu...
Đọc tiếp

Ai giải giúp mấy bài toán vs

Bài 1:

A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)

B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)

Bài 2 rút gọn biểu thức

A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0

B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)

Bài 3 cho biểu thức

P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)

a)Rút gọn P

b)tìm x để P=\(\text{√}x+\frac{5}{2}\)

bài 4 rút gọn biểu thức 

A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)

B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)

Bài 5

A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)

a)rút gọn A

b)tìm gtri x để A= -1/4

AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN

0
23 tháng 7 2020

a)  \(ĐKXĐ:x\ne\pm2\)

\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)

\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)

\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)

\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)

\(\Leftrightarrow P=\frac{x+2}{x-2}\)

b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)

\(\Leftrightarrow4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)

Loại \(x=-2\)

\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)

Vì P là số nguyên tố nên

\(P\in\left\{5;3;2\right\}\)

Vậy để P là số nguyên tố thì  \(x\in\left\{3;4;6\right\}\)

14 tháng 10 2020

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)

ĐK : x ≠ ±1 ; x ≠ 0 ; x ≠ -2019

\(=\left(\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\frac{x^2-1}{x^2-1}\times\frac{x+2019}{x}=\frac{x+2019}{x}\)

14 tháng 10 2020

b. \(A=\frac{x+2019}{x}=1+\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\hept{\begin{cases}x>0\\x\in Z\end{cases}}\) và x đạt giá trị bé nhất 

<=> x = 1

Khi đó A = 2020