x+y = 1/2 , y+z= 1/3 , z+x= 1/6 Tìm x,y,z thỏa mãn :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi đề bài có vậy thôi nha.
Bạn chỉ mình cách dãy tỉ số bằng nhau đc ko ạ???
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$
Tương tự:
$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$
$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$
Cộng theo vế:
$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)
Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$
Ta có :
\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow2x+2y+2z=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)
\(\Rightarrow2\left(x+y+z\right)=1\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}\Rightarrow z=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}\Rightarrow x=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}\Rightarrow y=\frac{1}{3}\end{cases}}\)
Vậy \(x=\frac{1}{6},y=\frac{1}{3};z=0\) .
\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)
Ta có:\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow2\left(x+y+z\right)=1\)
\(\Leftrightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\end{cases}}\)
Vậy....