K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2022

2 tháng 4 2017

\(A=\frac{x^2-2x+2011}{x^2}=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}\)

Đặt \(t=\frac{1}{x}\) ta có: \(A=2011t^2-2t+1\)

\(\Leftrightarrow A=2011t^2-2t+\frac{1}{2011}+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t^2-\frac{2t}{2011}+\frac{1}{2011^2}\right)+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t-\frac{1}{2011}\right)^2+\frac{2010}{2011}\ge\frac{2010}{2011}\)

Đẳng thức xảy ra khi \(t=\frac{1}{2011}\Leftrightarrow x=2011\)

1 tháng 5 2017

Ta có:\(\frac{x^2-2x+2011}{x^2}\ge\frac{2010}{2011}\Rightarrow2011\left(x^2-2x+2011\right)\ge2010x^2\)

\(\Rightarrow2011x^2-2x2011+2011^2\ge2010^2\)

\(\Rightarrow2011x^2-2x2011+2011-2010x^2\ge0\)

\(\Rightarrow x^2-2x2011+2011^2\ge0\)

\(\Rightarrow\left(x-2011\right)^2\ge0\)(đúng)

\(\Rightarrow\)đpcm