Tìm a để hàm số y=\(\frac{4x^2+1}{\left(x-5-a^2\right)\sqrt{2a+7-x}}-\sqrt{x+8-a}\) xác định trên nửa khoảng (-2;5] .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}2a+7-x>0\\x-5-a^2\ne0\\x+8-a\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 2a+7\\x\ne a^2+5\\x\ge a-8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-8\le x< 2a+7\\x\ne a^2+5\\a>-15\end{matrix}\right.\)
Để hàm số xác định trên (-2;5] \(\Rightarrow\left\{{}\begin{matrix}(-2;5]\subset[a-8;2a+7)\\a^2+5\notin(-2;5]\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-8\le-2\\2a+7>5\\a\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a\le6\\a>-1\\a\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-1< a\le6\\a\ne0\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}2a+7-x>0\\x-5-a^2\ne0\\x+8-a\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 2a+7\\x\ne a^2+5\\x\ge a-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-8\le x< 2a+7\\2a+7>a-8\\x\ne a^2+5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-8\le x< 2a+7\\a>-15\\x\ne a^2+5\end{matrix}\right.\)
Để hàm số xác định trên miền đã cho thì:
\(\left\{{}\begin{matrix}a-8\le-2\\2a+7>5\\a>-15\\a\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a\le6\\a>-1\\a>-15\\a\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-1< a\le6\\a\ne0\end{matrix}\right.\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
\(\dfrac{\sqrt{3}}{2}< 1;\dfrac{\sqrt[3]{26}}{3}< 1;\pi>1;\dfrac{\sqrt{15}}{4}< 1\)
Hàm số đồng biến là: \(log_{\pi}x\)
Hàm số nghịch biến là: \(\left(\dfrac{\sqrt{3}}{2}\right)^x;\left(\dfrac{\sqrt[3]{26}}{3}\right)^x;log_{\dfrac{\sqrt{15}}{4}}x\)
a) • \(y = f\left( x \right) = \frac{1}{{x - 1}}\)
ĐKXĐ: \(x - 1 \ne 0 \Leftrightarrow x \ne 1\)
Vậy hàm số có tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
• \(y = g\left( x \right) = \sqrt {4 - x} \)
ĐKXĐ: \(4 - x \ge 0 \Leftrightarrow x \le 4\)
Vậy hàm số có tập xác định: \(D = \left( { - \infty ;4} \right]\).
b) • Với mọi \({x_0} \in \left( { - \infty ;1} \right)\), ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{x - 1}} = \frac{{\mathop {\lim }\limits_{x \to {x_0}} 1}}{{\mathop {\lim }\limits_{x \to {x_0}} x - \mathop {\lim }\limits_{x \to {x_0}} 1}} = \frac{1}{{{x_0} - 1}} = f\left( {{x_0}} \right)\)
Vậy hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;1} \right)\).
Tương tự ta có hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {1; + \infty } \right)\).
Ta có: Hàm số không xác định tại điểm \({x_0} = 1\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x - 1}} = - \infty \)
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).
Vậy hàm số \(y = f\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
• Với mọi \({x_0} \in \left( { - \infty ;4} \right)\), ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {4 - x} = \sqrt {\mathop {\lim }\limits_{x \to {x_0}} 4 - \mathop {\lim }\limits_{x \to {x_0}} x} = \sqrt {4 - {x_0}} = g\left( {{x_0}} \right)\)
Vậy hàm số \(y = g\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;4} \right)\).
Ta có: \(g\left( 4 \right) = \sqrt {4 - 4} = 0\)
\(\mathop {\lim }\limits_{x \to {4^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \sqrt {4 - x} = \sqrt {\mathop {\lim }\limits_{x \to {4^ - }} 4 - \mathop {\lim }\limits_{x \to {4^ - }} x} = \sqrt {4 - 4} = 0 = g\left( 4 \right)\)
Vậy hàm số \(y = g\left( x \right)\) liên tục tại điểm \({x_0} = 4\).
Hàm số không xác định tại mọi \({x_0} \in \left( {4; + \infty } \right)\) nên hàm số \(y = g\left( x \right)\) không liên tục tại mọi điểm \({x_0} \in \left( {4; + \infty } \right)\).
Vậy hàm số \(y = g\left( x \right)\) liên tục trên nửa khoảng \(\left( { - \infty ;4} \right]\).
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne a^2+5\\2a+7-x>0\\x+8-a\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne a^2+5\\x< 2a+7\\x\ge a-8\end{matrix}\right.\)
Để miền xác định của hàm khác rỗng
\(\Rightarrow2a+7>a-8\Rightarrow a>-15\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne a^2+5\\a-8\le x< 2a+7\end{matrix}\right.\)
Để hàm xác định trên \((-2;5]\Leftrightarrow\left\{{}\begin{matrix}a^2+5\notin(-2;5]\\(-2;5]\subset[a-8;2a+7)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\-2\ge a-8\\5< 2a+7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\le6\\a>-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a\ne0\\-1< a\le6\end{matrix}\right.\)
cảm ơn bạn nha