\(\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}\)
\(\Rightarrow A^3=50-3\sqrt[3]{\left(22\sqrt{2}+25\right)\left(22\sqrt{2}-25\right)}\left(\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}\right)\)
\(\Rightarrow A^3=50-3\sqrt[3]{\left(22\sqrt{2}+25\right)\left(22\sqrt{2}-25\right)}\cdot A\)
\(\Rightarrow A^3=50-3A\sqrt[3]{343}=50-21A\)
\(\Rightarrow A^3+21A-50=0\Leftrightarrow A^3-4A+25A-50=0\)
\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+25\right)=0\)
\(\Leftrightarrow A=2\left(A^2+2A+25>0,\forall A\right)\)
\(\Rightarrow\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}=2\)
Tick nha bạn 😘
a) Ta có: \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{x-1}+1+1\)(Vô lý)
Vậy: \(S=\varnothing\)
b) Ta có: \(\sqrt{x^4+2x^2+1}=\sqrt{x^2+10x+25}-10x+22\)
\(\Leftrightarrow x^2+1=\left|x+5\right|-10x+22\)
\(\Leftrightarrow\left|x+5\right|=x^2+1+10x-22=x^2+10x-21\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2+10x-21\left(x\ge-5\right)\\-x-5=x^2+10x-21\left(x< -5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+10x-21-x-5=0\\x^2+10x-21+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+9x-26=0\\x^2+11x-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{185}}{2}\\x=\dfrac{-11-\sqrt{185}}{2}\end{matrix}\right.\)
\(A=\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+....+\dfrac{1}{\sqrt{2}+1}\)
\(A=\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+......+\sqrt{2}-1=\sqrt{25}-1=4\)
a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81
⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0
⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0
⇔ 7x2 - 4x - 96 = 0
x1 = 4 ( nhận )
x2 = \(\frac{-24}{7}\) ( nhận )
Vậy: S = {4; \(\frac{-24}{7}\)}
Đặt \(A=\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}\)
\(\Rightarrow A^3=22\sqrt{2}+25-\left(22\sqrt{2}-25\right)-3\sqrt[3]{\left(22\sqrt{2}+25\right)\left(22\sqrt{2}-25\right)}.\)
\(\left(\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}\right)\)
\(=50-3\sqrt[3]{\left(22\sqrt{2}\right)^2-25^2}.A\)
\(\Rightarrow A^3=50-3A\sqrt[3]{343}\Leftrightarrow A^3=50-21A\)
\(\Leftrightarrow A^3+21A-50=0\Leftrightarrow A^3-4A+25A-50=0\)
\(\Leftrightarrow A\left(A^2-4\right)+25\left(A-2\right)=0\Leftrightarrow\left(A-2\right)\left(A+2\right)A+25\left(A-2\right)=0\)
\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+25\right)=0\)
Vì \(A^2+2A+25=\left(A+1\right)^2+24>0,\forall A\Rightarrow A-2=0\Leftrightarrow A=2\)