\(\sqrt[3]{99+70\sqrt{2}}+\sqrt[3]{25-22\sqrt{2}}.\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

 \(^6\sqrt{2019} = b, ^6\sqrt{2020} = a \\ Then, A = a^3 - b^3; B = a^2 -b^2\\ \Rightarrow A > B \)

14 tháng 10 2020

\(C^3=2-\sqrt{5}+2+\sqrt{5}+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2-\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}\right)\)

\(=4+3\sqrt[3]{4-5}.C=4-3C\Leftrightarrow C^3+3C-4=0\Leftrightarrow\left(C-1\right)\left(C^2+C+4\right)=0\)

\(\Leftrightarrow C-1=0\Leftrightarrow C=1\)

31 tháng 8 2020

Sử dụng bất đẳng thức AM - GM ta dễ thấy:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(\ge2\sqrt{\left(a-1+2\sqrt{a-2}\right)\left(a-1-2\sqrt{a-2}\right)}\)

\(=2\sqrt{\left(a-1\right)^2-4\left(a-2\right)}=2\sqrt{a^2-6a+9}=2\sqrt{\left(a-3\right)^2}\ge2\)( vì a khác 3 ) 

Hoặc cách khác như thế này:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(=\sqrt{\left[a-2+2\sqrt{a+2}+1\right]}+\sqrt{\left[a-2-2\sqrt{a-2}+1\right]}\)

\(=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(=\left|\sqrt{a-2}+1\right|+\left|\sqrt{a-2}-1\right|\)

\(=\left|\sqrt{a-2}+1\right|+\left|1-\sqrt{a-2}\right|\ge\left|\sqrt{a-2}+1+1-\sqrt{a-2}\right|=2\)

Đẳng thức tự tìm nha

9 tháng 10 2020

Chứng minh với mọi số nguyên dương, ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\text{[}\left(n+1\right)\sqrt{n}\text{]}^2-\left(n\sqrt{n+1}\right)^2}\)\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\text{ }\left(n+1\right)^2.n-n^2.\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)n\left(n+1-n\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng: Tính B=....

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\left(\frac{-1}{\sqrt{120}}\right)+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}=\frac{10}{11}\)

9 tháng 10 2020

Dạng tổng quát: Với n là các số lẻ lớn hơn hoặc bằng 3 thì \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n-2\right)}\left(\sqrt{n}+\sqrt{n-2}\right)}=\frac{1}{\sqrt{n\left(n-2\right)}.\frac{2}{\sqrt{n}-\sqrt{n-2}}}=\frac{\sqrt{n}-\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)Áp dụng, ta được: \(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{119}}-\frac{1}{\sqrt{121}}\right)=\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{5}{11}\)Vậy C = 5/11

Xét :\(\frac{1}{\left(a+2\right)\sqrt{a}+a\sqrt{a+2}}=\frac{1}{\sqrt{a}.\sqrt{a+2}\left(\sqrt{a+2}+\sqrt{a}\right)}=\frac{\sqrt{a+2}-\sqrt{a}}{2\sqrt{a}.\sqrt{a+2}}=\frac{1}{2\sqrt{a}}-\frac{1}{2\sqrt{a+2}}\)

Xét: 

\(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{3}}-\frac{1}{2\sqrt{5}}+\frac{1}{2\sqrt{5}}-\frac{1}{2\sqrt{7}}+...+\frac{1}{2\sqrt{119}}-\frac{1}{2\sqrt{121}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{121}}=\frac{1}{2}-\frac{1}{2.11}=\frac{5}{11}\)