Giả sử n là số nguyên tố > 2. Chứng minh rằng 2013n2 + 3 chia 8 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi
Vì 9 là SNT ( số nguyên tố ) lớn 3
=> p khi chia cho 3 có 2 dạng:
p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )
+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1
= 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3
=> 2p + 1 là hợp số ( loại )
Vậy: p = 3k + 2
=> 4p + 1 = 4 . ( 3k + 2 ) + 1
= 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3
=> 4p + 1 là hợp số ( điều phải chứng minh )
Kết luận:
p nguyên tố > 3
=> p chia 3 dư 1,2
=> 2p + 1 chia 3 dư 0, 2
Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2
=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3
=> 4p+1 là hợp số
Lại có p>q>3 nên q=3k+1, 3k+2 ( k là stn và k>0 )
Loại q=3k+1 vì nếu q=3k+1 thì p=3(k+1) chia hết cho 3 là hợp số( vô lý)
Vậy q=3k+2 nên p=3(k+1)+1
Đặt k=2m, 2m+1
Nếu k=2m thì q=3(2m+1)+1. Mà 3(2m+1) là số lẻ nên q chẵn. Mà q là số nguyên tố và q>2 nên q lẻ ( vô lý)
Vậy k=2m+1
Suy ra \(q^3+p^3=18k^3+162k^2+180k+72\)
Dễ thấy \(180k+72⋮36\)
Cần cm \(18k^3+162k^2⋮36\)
Dễ thấy \(18k^3+162k^2\) chia hết cho 9 (1)
Vì m là số lẻ nên m chia 4 dư 1 hoặc 3
Xét 2 trường hợp suy ra \(18k^3+162k^2\) chia hết cho 4 (2)
Từ (1),(2) và 4 và 9 là 2 số nguyên tố cùng nhau
Suy ra \(18k^3+162k^2⋮36\)
Vậy ta có điều phải chứng minh
Từ đoạn Suy ra q3+p3=18k3+162k2+180k+72 mình viết nhầm m thành k :))))))))
a) Vì p lớn hơn 3 nên p ko chia hết cho 3
=> ta có: p=3k+1 hoặc 3k+2
Xét p=3k+1=>p+2=3k+1+2=3.3(k+1) chia hết cho 3
=>p+2 là hợp số(vô lý)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3,2)=1=>p+1 chia hết cho 6
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
\(\frac{2013n^2+3}{8}\inℤ\Leftrightarrow2013n^2+3⋮8\Leftrightarrow8.251.n^2+5n^2+3⋮8\)
Vì \(8.251.n^2⋮8\) nên \(5n^2+3⋮8\Leftrightarrow5n^2+3-8⋮8\Leftrightarrow5\left(n^2-1\right)⋮8\)
Vì 5 và 8 là 2 số nguyên tố cùng nhau nên \(n^2-1⋮8\Leftrightarrow\left(n-1\right)\left(n+1\right)⋮8\)
Vì các số nguyên tố lớn hơn 2 đều lẻ nên sẽ có dạng (4k+1) hoặc (4k+3), k là số tự nhiên
\(\Rightarrow\left(n-1\right)\left(n+1\right)=\orbr{\begin{cases}\left[\left(4k+1\right)-1\right]\left[\left(4k+1\right)+1\right]=4k\left(4k+2\right)⋮8\\\left[\left(4k+3\right)-1\right]\left[\left(4k+3\right)+1\right]=\left(4k+2\right)\left(4k+4\right)⋮8\end{cases}}\)
(Vì (4k+2) là số chẵn và (4k), (4k+4) đều chia hết cho 4 nên tích của chúng chia hết cho 8) ---->đpcm