xét tính đồng biến nghịch biến
1 y= (x+1).(\(\sqrt{X+4}\)
2. y=\(\frac{\sqrt{x}}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) TXĐ: $x\in [-2;2]$
$y'=\frac{-x}{\sqrt{4-x^2}}=0\Leftrightarrow x=0$
Hàm số có điểm tới hạn $x=0$
Vẽ bảng biến thiên ta thu được hàm số đồng biến trên $(-2;0)$ và nghịch biến trên $(0;2)$
b) TXĐ: $x\in (-\infty;2]\cup [3;+\infty)$
$y'=\frac{2x-5}{2\sqrt{x^2-5x+6}}=0\Leftrightarrow x=\frac{5}{2}$ (loại vì không thuộc TXĐ)
Vẽ bảng biến thiên với các mốc $-\infty; 2;3;+\infty$ ta thấy hàm số đồng biến $(3;+\infty)$ và nghịch biến trên $(-\infty;2)$
a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến
b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:
\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)
\(=9-8+\sqrt{2}-1\)
\(=\sqrt{2}\)
a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.
b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`
`=> y=\sqrt2` khi `x=3+2\sqrt2`
ĐKXĐ: \(x^2-6x+5>=0\)
=>(x-1)(x-5)>=0
TH1: \(\left\{{}\begin{matrix}x-1>=0\\x-5>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=1\\x>=5\end{matrix}\right.\Leftrightarrow x>=5\)
TH2: \(\left\{{}\begin{matrix}x-1< =0\\x-5< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =1\\x< =5\end{matrix}\right.\)
=>x<=1
\(y=\sqrt{x^2-6x+5}\)
=>\(y'=\dfrac{\left(x^2-6x+5\right)'}{2\sqrt{x^2-6x+5}}\)
=>\(y'=\dfrac{2x-6}{2\sqrt{x^2-6x+5}}\)
Đặt y'>0
=>\(\dfrac{2x-6}{2\sqrt{x^2-6x+5}}>0\)
=>2x-6>0
=>x>3
kết hợp ĐKXĐ, ta được: x>5
Đặt y'<0
=>\(\dfrac{2x-6}{2\sqrt{x^2-6x+5}}< 0\)
=>2x-6<0
=>x<3
Kết hợp ĐKXĐ, ta được: x<1
Vậy: Hàm số nghịch biến trên (-\(\infty\);1) và đồng biến trên (5;+\(\infty\))
a/ ĐKXĐ: \(x\ge-4\)
\(y'=\sqrt{x+4}+\frac{x+1}{2\sqrt{x+4}}=\frac{3\left(x+3\right)}{2\sqrt{x+4}}=0\Rightarrow x=-3\)
Hàm nghịch biến trên \([-4;-3)\) và đồng biến trên \(\left(-3;+\infty\right)\)
b/ ĐKXĐ: \(x\ge0\)
\(y'=\frac{1-x}{2\left(x+1\right)^2\sqrt{x}}=0\Rightarrow x=1\)
Hàm đồng biến trên \([0;1)\) và nghịch biến trên \(\left(1;+\infty\right)\)