Tìm Min
C=x2+y2+7(x+y=2)
F=\(\frac{3}{2x-x^2-4}\)
G=\(\frac{2}{6x-5-9x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
D = 2x2 + 9y2 - 6xy - 6x + 12y + 2012
= [ ( x2 - 6xy + 9y2 ) - 4x + 12y + 4 ] + ( x2 - 2x + 1 ) + 2007
= [ ( x - 3y )2 - 2( x - 3y ).2 + 22 ] + ( x - 1 )2 + 2007
= ( x - 3y + 2 )2 + ( x - 1 )2 + 2007
\(\hept{\begin{cases}\left(x-3y+2\right)^2\\\left(x-1\right)^2\end{cases}}\ge0\forall x\Rightarrow\left(x-3y+2\right)^2+\left(x-1\right)^2+2007\ge2007\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3y+2=0\\x-1=0\end{cases}}\Rightarrow x=y=1\)
=> MinD = 2007 <=> x = y = 1
E = x2 - 2xy + 4y2 - 2x - 10y + 29 ( -10y mới ra đc nhé, mò mãi :v )
= [ ( x2 - 2xy + y2 ) - 2x + 2y + 1 ] + ( 3y2 - 12y + 12 ) + 16
= [ ( x - y )2 - 2( x - y ) + 12 ] + 3( y2 - 4y + 4 ) + 16
= ( x - y - 1 )2 + 3( y - 2 )2 + 16
\(\hept{\begin{cases}\left(x-y-1\right)^2\\3\left(y-2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-y-1\right)^2+3\left(y-2\right)^2+16\ge16\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
=> MinE = 16 <=> x = 1 ; y = 2
F = \(\frac{3}{2x-x^2-4}\)
Để F đạt GTNN => 2x - x2 - 4 đạt GTLN
Ta có : 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 < 0 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinF = \(\frac{3}{-3}=-1\)<=> x = 1
G = \(\frac{2}{6x-5-9x^2}\)
Để G đạt GTNN => 6x - 5 - 9x2 đạt GTLN
Ta có 6x - 5 - 9x2 = -9( x2 - 2/3x + 1/9 ) - 4 = -9( x - 1/3 )2 - 4 ≤ -4 < 0 ∀ x
Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3
=> MinG = \(\frac{2}{-4}=-\frac{1}{2}\)<=> x = 1/3
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
a: \(h\left(x\right)=7x^5+x^4-2x^3+4+x^4+6x^3-9x^2-2x-1=7x^5+2x^4+4x^3-9x^2-2x+3\)
b: \(h\left(x\right)=7x^5+x^4-2x^3+4-x^4-6x^3+9x^2+2x+1=7x^5-8x^3+9x^2+2x+5\)
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
a) Đặt \(x=1+m\)và \(y=1-m\)khi đó \(x+y=2\)
Ta có: \(C=x^2+y^2+7=\left(1+m\right)^2+\left(1-m\right)^2+7\)
\(=1+2m+m^2+1-2m+m^2+7=2m^2+9\)
Vì \(m^2\ge0\forall x\)\(\Rightarrow2m^2\ge0\forall m\)\(\Rightarrow2m^2+9\ge9\forall m\)
Dấu " = " xảy ra \(\Leftrightarrow m=0\)\(\Rightarrow x=y=1\)
Vậy \(minC=9\)\(\Leftrightarrow x=y=1\)