Tìm \(a\inℕ\)để a2 + a + 43 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(a^2+a+43=k^2\) (\(k\in N;k>a\))
\(\Leftrightarrow4a^2+4a+172=4k^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2k-2a-1\right)\left(2k+2a+1\right)=171\)
Pt ước số, bạn tự lập bảng
b.
\(a^2+81=k^2\)
\(\Leftrightarrow k^2-a^2=81\)
\(\Leftrightarrow\left(k-a\right)\left(k+a\right)=81\)
Bạn tự lập bảng ước số
Bạn kẹp a^2+a+43 giữa a^2 và (a+7)^2 rồi xét tất cả các trường hợp ở giữa.Tìm đc a=2,13,42
thì 4(a^2+a+43)=m^2
=>(2a)^2+4a+43=m^2
=>(2a)^2+2.a.2+43=m^2
=>(2a)^2+2.a.2+2^2+39=m^2
=>(2a+2)^2+39=m^2
=>m^2-(2a+2)^2=39
=>[m+(2a+2)].[m-(2a+2)]=39
đưa về toán tổng hiệu và h
(em học lớp 6)
Lời giải:
Để $n^4+n^3+1$ là scp $\Leftrightarrow A=4n^4+4n^3+4$ cũng phải là scp
Xét $A-(2n^2+n+1)^2=4n^4+4n^3+4-(2n^2+n+1)^2=-5n^2-2n+3\leq -5-2n+3=-2-2n<0$ với mọi $n\geq 1$
$\Rightarrow A< (2n^2+n+1)^2(1)$
Xét $A-(2n^2+n-1)^2=4n^4+4n^3+4-(2n^2+n-1)^2=3n^2+2n+3>0$ với mọi $n\geq 1$
$\Rightarrow A> (2n^2+n-1)^2(2)$
Từ $(1); (2)\Rightarrow (2n^2+n-1)^2< A< (2n^2+n+1)^2$
$\Rightarrow A=(2n^2+n)^2$
$\Rightarrow (4n^4+4n^3+4)=(2n^2+n)^2$
$\Leftrightarrow 4-n^2=0$
$\Rightarrow n=2$
Bài làm:
Đặt \(a^2+a+43=x^2\)
\(\Leftrightarrow4a^2+4a+172=4x^2\)
\(\Leftrightarrow\left(4a^2+4a+1\right)+171=4x^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=4x^2\)
\(\Leftrightarrow4x^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2x-2a-1\right)\left(2x+2a+1\right)=171=1.171=3.57=9.19\)
Ta thấy \(4x^2-\left(2a+1\right)^2=171\Rightarrow2x>2a+1\), mà x là số tự nhiên nên
=> \(\hept{\begin{cases}2x-2a-1>0\\2x+2a+1>0\end{cases}}\Rightarrow2x-2a-1< 2x+2a+1\)
Ta xét các TH sau:
+ Nếu: \(\hept{\begin{cases}2x-2a-1=1\\2x+2a+1=171\end{cases}}\Rightarrow4a+2=170\Leftrightarrow4a=168\Rightarrow a=42\)
+ Nếu: \(\hept{\begin{cases}2x-2a-1=3\\2x+2a+1=57\end{cases}\Rightarrow}4a+2=54\Leftrightarrow4a=52\Rightarrow a=13\)
+ Nếu: \(\hept{\begin{cases}2x-2a-1=9\\2x+2a+1=19\end{cases}}\Rightarrow4a+2=10\Leftrightarrow4a=8\Rightarrow a=2\)
Vậy \(a\in\left\{2;13;42\right\}\) thì a2+a+43 là số chính phương