K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

a) Ta có: \(4+2\sqrt{3}\)

\(=3+2\cdot\sqrt{3}\cdot1+1\)

\(=\left(\sqrt{3}+1\right)^2\)

b) Ta có: \(7+4\sqrt{3}\)

\(=4+2\cdot2\cdot\sqrt{3}+3\)

\(=\left(2+\sqrt{3}\right)^2\)

c) Ta có: \(9+4\sqrt{5}\)

\(=5+2\cdot\sqrt{5}\cdot2+4\)

\(=\left(\sqrt{5}+2\right)^2\)

d) Ta có: \(31+10\sqrt{6}\)

\(=25+2\cdot5\cdot\sqrt{6}+6\)

\(=\left(5+\sqrt{6}\right)^2\)

e) Ta có: \(13+4\sqrt{3}\)

\(=12+2\cdot2\sqrt{3}\cdot1+1\)

\(=\left(2\sqrt{3}+1\right)^2\)

g) Ta có: \(21+12\sqrt{3}\)

\(=12+2\cdot2\sqrt{3}\cdot3+9\)

\(=\left(2\sqrt{3}+3\right)^2\)

h) Ta có: \(29+12\sqrt{5}\)

\(=20+2\cdot2\sqrt{5}\cdot3+3\)

\(=\left(2\sqrt{5}+3\right)^2\)

i) Ta có: \(49+8\sqrt{3}\)

\(=48+2\cdot4\sqrt{3}\cdot1\)

\(=\left(4\sqrt{3}+1\right)^2\)

k) Sửa đề: \(14-6\sqrt{5}\)

Ta có: \(14-6\sqrt{5}\)

\(=9-2\cdot3\cdot\sqrt{5}+5\)

\(=\left(3-\sqrt{5}\right)^2\)

l) Ta có: \(23-8\sqrt{7}\)

\(=16-2\cdot4\cdot\sqrt{7}+7\)

\(=\left(4-\sqrt{7}\right)^2\)

m) Ta có: \(15-4\sqrt{11}\)

\(=11-2\cdot\sqrt{11}\cdot2+4\)

\(=\left(\sqrt{11}-2\right)^2\)

n) Sửa đề: \(28-10\sqrt{3}\)

Ta có: \(28-10\sqrt{3}\)

\(=25-2\cdot5\cdot\sqrt{3}+3\)

\(=\left(5-\sqrt{3}\right)^2\)

o) Ta có: \(17-12\sqrt{2}\)

\(=9-2\cdot3\cdot2\sqrt{2}+8\)

\(=\left(3-2\sqrt{2}\right)^2\)

p) Ta có: \(43-30\sqrt{2}\)

\(=25-2\cdot5\cdot3\sqrt{2}+18\)

\(=\left(5-3\sqrt{2}\right)^2\)

q) Ta có: \(51-10\sqrt{2}\)

\(=50-2\cdot5\sqrt{2}\cdot1\)

\(=\left(5\sqrt{2}-1\right)^2\)

r) Ta có: \(49-12\sqrt{5}\)

\(=45-2\cdot3\sqrt{5}\cdot2+4\)

\(=\left(3\sqrt{5}-2\right)^2\)

NV
1 tháng 8 2021

\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)

\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)

\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)

\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)

7 tháng 7 2017

\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)

các câu còn lại làm tương tự nhé bạn !

19 tháng 8 2017

Hà Nam răng từ\(\sqrt{4}.....\)sang đc 2+ căn 3 đó ???

20 tháng 8 2020

a) \(21-8\sqrt{5}=16-2\times4\times\sqrt{5}+5=\left(4-\sqrt{5}\right)^2\)

b) \(47-12\sqrt{11}=36-2\times6\times\sqrt{11}+11=\left(6-\sqrt{11}\right)^2\)

c) \(13-4\sqrt{3}=12-2\times1\times\sqrt{3}+1=\left(2\sqrt{3}-1\right)^2\)

d) \(43+30\sqrt{2}=25+2\times5\times3\sqrt{2}+18=\left(5+3\sqrt{2}\right)^2\)

e) \(41+24\sqrt{2}=9+2\times3\times4\sqrt{2}+32=\left(3+4\sqrt{2}\right)^2\)

g) \(29-12\sqrt{5}=9+2\times3\times2\sqrt{5}+20=\left(3+2\sqrt{5}\right)^2\)

h) \(49-8\sqrt{3}=48-2\times4\sqrt{3}\times1+1=\left(4\sqrt{3}-1\right)^2\)

i) \(37-12\sqrt{7}=28-2\times3\times2\sqrt{7}+9=\left(2\sqrt{7}-3\right)^2\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

7.

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+2\sqrt{4.3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{(\sqrt{4}+\sqrt{3})^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10(2+\sqrt{3})}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-2.5\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{(5-\sqrt{3})^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5(5-\sqrt{3})}}=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=3\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

7 tháng 7 2021

b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)

c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)

d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)

f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)

g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)

7 tháng 7 2021

Thanks

12 tháng 10 2023

a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)

d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)

\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)

\(=\dfrac{3}{x-y}\)