Phân tích đa thức thành nhân tử:
\(a-3\sqrt{ab}+5b\) với \(a\ge0;b\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3a-2\sqrt{ab}-b=3a-3\sqrt{ab}+\sqrt{ab}-b\)
\(=3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)=\left(3\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
b) \(5a+3\sqrt{ab}-8b=5a-5\sqrt{ab}+8\sqrt{ab}-8b\)
\(=5\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+8\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(5\sqrt{a}+8\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
a) (\(\sqrt{a}-\sqrt{b}\))(3\(\sqrt{a}+b\))
b) \(\left(\sqrt{a}-\sqrt{b}\right)\left(5\sqrt{a}+8\sqrt{b}\right)\)
a: \(A=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
b: \(B=5x^2-7x\sqrt{y}+2y\)
\(=5x^2-5x\sqrt{y}-2x\sqrt{y}+2y\)
\(=5x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(5x-2\sqrt{y}\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2=\left(a\sqrt{a}+2a\right)+\left(\sqrt{a}+2\right)\)
\(=a\left(\sqrt{a}+2\right)+\left(\sqrt{a}+2\right)=\left(\sqrt{a}+2\right)\left(a+1\right)\)
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
\(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)