K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

\(A=\frac{8\left(x^2+3\right)-33}{x^2+3}=8-\frac{33}{x^2+3}< 8\)

\(\Rightarrow\) Không tồn tại \(A_{max}\)

\(x^2+3\ge3\Rightarrow\frac{33}{x^2+3}\le11\)

\(\Rightarrow A\ge8-11=-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=0\)

22 tháng 8 2020

a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)

Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)

Vậy Amin = 8 - 11 = - 3 <=> x = 0

b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)

Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)

mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\)  <=> x = 1

19 tháng 8 2020

\(K=\frac{-7}{-2x^2+8x-60}\)

\(K=\frac{-7}{-2\left(x^2-4x+4-26\right)}\)

\(K=\frac{7}{2\left(x-2\right)^2-56}\)

Ta có : \(2\left(x-2\right)^2-56\ge-56\)

\(\Rightarrow K_{max}=\frac{-7}{56}\Leftrightarrow x=2\)

19 tháng 8 2020

\(L=\frac{8}{-3x^2+9x-40}\)

\(L=\frac{8}{-3\left(x^2-3x+\frac{9}{4}+\frac{133}{12}\right)}\)

\(L=\frac{-8}{3\left(x-\frac{3}{2}\right)^2+\frac{133}{4}}\)

Ta có : \(3\left(x-\frac{3}{2}\right)^2+\frac{133}{4}\ge\frac{133}{4}\)

\(\Rightarrow L_{max}=-\frac{8.4}{133}=-\frac{32}{133}\Leftrightarrow x=\frac{3}{2}\)

a: \(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

20 tháng 8 2020

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)

Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN

=> \(\left(x+1\right)^2+3\)(*) đạt GTNN

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)

=> Min(*) = 3 <=> x + 1 = 0 => x = -1

=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1

Mình không chắc nha -.-

20 tháng 8 2020

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)

Để M đạt GTLN  => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN 

Hay \(x^2+2x+4\)(*) đạt GTNN 

Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)

Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)

Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1

Suy ra GTLN (**) = 52/3 khi x = -1

Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1

30 tháng 8 2021

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

30 tháng 8 2021

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

27 tháng 2 2022

m.n ơi giúp mk 1 hoặc 2 câu đc ko ạ mk cần gấp lắm mà mk ko bt cách lm

21 tháng 10 2023

loading...  loading...  loading...  

31 tháng 10 2021

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

31 tháng 10 2021

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)