K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

30 tháng 8 2021

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

2 tháng 9 2020

A = x2 + 4x + 9

= ( x2 + 4x + 4 ) + 5

= ( x + 2 )2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 5 <=> x = -2

B = x2 + 6x + 12

= ( x2 + 6x + 9 ) + 3

= ( x + 3 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinB = 3 <=> x = -3

C = x2 + 3x + 6

= ( x2 + 3x + 9/4 ) + 15/4

= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

=> MinC = 15/4 <=> x = -3/2

D = x2 + 5x + 10

= ( x2 + 5x + 25/4 ) + 15/4

= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinD = 15/4 <=> x = -5/2

E = 2x2 + 7x + 5

= 2( x2 + 7/2x + 49/16 ) - 9/8

= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x

Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4

=> MinE = -9/8 <=> x = -7/4

F = 3x2 + 8x + 9

= 3( x2 + 8/3x + 16/9 ) + 11/3

= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x

Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3

=> MinF = 11/3 <=> x = -4/3

25 tháng 7 2020

a) \(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 khi x = 2

b) B = \(2x^2-4x-6=2\left(x^2-2x-3\right)=2\left(x^2-2x+1\right)-8=2\left(x-1\right)^2-8\)

\(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2-8\ge-8\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

Vậy BMin = -8 khi x = 1

c) C = \(3x^2+9x+6=3\left(x^2+3x+2\right)=3\left(x^2+3x+\frac{9}{4}\right)-\frac{3}{4}=3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\)

\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\Rightarrow3\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\ge-\frac{3}{4}\forall x\)

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

Vậy CMin = -3/4 khi x = -3/2

d) D = \(5x^2+5x+1=5\left(x^2+x+\frac{1}{5}\right)=5\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}=5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow5\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

Vậy DMin = -1/4 khi x = -1/2

6 tháng 11 2018

a)\(A=x^2-1\)

\(Nx:\)\(x^2\ge0\)

\(\Rightarrow A_{Min}=0-1=-1\Leftrightarrow x=0\)

b) \(B=x^2-2x+3\)

\(=x\left(x-2\right)+3\)

\(Nx:x\left(x-2\right)\ge0\)

\(\Rightarrow B_{Min}=3\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0\)

c) \(C=\left|2x+1\right|-5\)

\(Nx:\left|2x+1\right|\ge0\Rightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)

\(\Rightarrow C_{Min}=-5\Leftrightarrow x=\frac{-1}{2}\)

d) \(D=3x^2+6x-7\)

\(=3\left(x^2+2x\right)-7\)

\(Nx:Min_{x^2+2x}=-1\Leftrightarrow x=-1\)

\(D_{Min}=-8\Leftrightarrow x=-1\)

9 tháng 8 2018

Mn xem nhanh nhanh cho mik chút nha ai đúng và nhanh nhất mik k cảm ơn mn nhìu

27 tháng 5 2021

Mk mới học lớp 6 ko biết làm

thông cảm nhưng

Hok tốt=))

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

27 tháng 3 2020

a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)

Dấu " = " xảy ra khi 

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy \(x=-1\)khi \(GTNN=-3\)

B:C: tương tự

d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)

              \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)

Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)

e) \(\left|-2x+6\right|\ge0\)

\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)

Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)

Vậy x = 3 khi đạt GTNN = 12

F ; G tương tự

hok tốt!!

27 tháng 3 2020

+) A=(x+1)2 - 3  

Vì  (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0   \(\Leftrightarrow\)x = - 1

Vậy min A = - 3 khi x = -1

+) B=(2x-5)20 + 9  

Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0    \(\Leftrightarrow\)x=\(\frac{5}{2}\)

Vậy min B=9 khi x=\(\frac{5}{2}\)

Những phần khác cũng làm tương tự :

+) minC= - 5 khi x=\(\frac{4}{3}\)

+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2

+) minE=12 khi x=3

+) min F = -17 khi x=5

+) min G = -12 khi x= - 4

25 tháng 4 2020

bài 1 : 

B=15-3x-3y

a) x+y-5=0 

=>x+y=-5

B=15-3x-3y <=> B=15-3(x+y)

Thay x+y=-5 vào biểu thức  B ta được :

B=15-3(-5)

B=15+15

B=30

Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30

b)Theo đề bài ; ta có :

B=15-3x-3.2=10

15-3x-6=10

15-3x=16

3x=-1

\(x=\frac{-1}{3}\)

Bài 2:

a)3x2-7=5

3x2=12

x2=4

x=\(\pm2\)

b)3x-2x2=0

=> 3x=2x2

=>\(\frac{3x}{x^2}=2\)

=>\(\frac{x}{x^2}=\frac{2}{3}\)

=>\(\frac{1}{x}=\frac{2}{3}\)

=>\(3=2x\)

=>\(\frac{3}{2}=x\)

c) 8x2 + 10x + 3 = 0

=>\(8x^2-2x+12x-3=0\)

\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)

vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)

Bài 5 đề  sai  vì  |1| không thể =2