K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

ab x cdc = abab

=> ab x cdc = ab x 100 + ab

=> ab x cdc = ab x 101 ( 1 )

=> cdc = 101 ( 2 )

=> c = 1 ; d = 0

15 tháng 9 2017

giúp tớ với nhé!

8 tháng 2 2021

Bài 5:

Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825

=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683

=> abc chia 1987 dư 304. Mà abc nhỏ nhất

=> abc = 304
Vậy số tự nhiên là 11111304

30 tháng 9 2023

loading...

giải 

biến đổi đẳng thức thành

\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)

      \(\overline{ab}.c=1001\div11=91\)

phân tích ra thừa số nguyên tố   \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là  \(13.7\)hoặc  \(91.1\)

th1 cho \(\overline{ab}=13,c=7\)

th2 cho  \(\overline{ab}=91,c=1\)loại vì  b=c

vậy ta có  \(13.77.137=137137\)

29 tháng 3 2019

Sửa một chút nhé:

\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)

<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)

<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)

<=> \(\overline{ab}.c.11=1001\)

<=> \(\overline{ab}.c=91\)

4 tháng 4 2018

Ta có \(\overline{abbc}=\overline{ab}.\overline{ac}.7^{\left(1\right)}\)

\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)

\(\Leftrightarrow7.\overline{ac}-100=\frac{bc}{ab}\)Vì \(0< \frac{bc}{ab}< 10\)nên \(0< 7.\overline{ac}-100< 10\)

\(\Leftrightarrow100< 7.\overline{ac}< 110\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\).Vậy \(\overline{ac}=15\)

Thay (1) được \(\overline{1bb5}=\overline{1b}.15.7\Leftrightarrow1005+110b=1050+105.b\)

\(\Leftrightarrow5b=45\Leftrightarrow b=9\)

Vậy \(a=1,b=9,c=5\)

1 tháng 4 2018

Bấm vào câu hỏi tương tự đi bạn . 

Anh Lê Mạnh Tiến Đạt giải rồi đấy 

11 tháng 3 2021

tham khỏa

image

18 tháng 5 2017

a, 111

b, 101

c, 1001

10 tháng 10 2017

a ) Ta có :

\(\overline{aaa}:a\)

\(=a.1.111:a.1\)

\(=111\)

b ) Ta có :

\(\overline{abab}:\overline{ab}\)

\(=\overline{ab}.100+\overline{ab}.1:\overline{ab}\)

\(=\overline{ab}.101:\overline{ab}\)

\(=101\)

c ) Ta có :

\(\overline{abcabc}:\overline{abc}\)

\(=\overline{abc}.1000+\overline{abc}.1:\overline{abc}\)

\(=\overline{abc}.1001:\overline{abc}\)

\(=1001\)