K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

\(A=x^2-x\)

\(A=x^2-x+\frac{1}{4}-\frac{1}{4}\)

\(A=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)

Min \(A=\frac{-1}{4}\Leftrightarrow x=\frac{1}{2}\)

19 tháng 8 2020

A=x2-x

Ta có: \(x^2\ge0\forall x\)

=> \(x^2-x\ge-x\forall x\)

Vậy MinA= -x <=> x=0

Ơ, hình như não với bài của mình đang bị lag lag đâu đó '-'?

5 tháng 11 2021

giê ơt nha bn

9 tháng 3 2022

k dễ đâu bạn ơi =))))

a: =4x^2-4x+1+9

=(2x-1)^2+9>=9

Dấu = xảy ra khi x=1/2

b: =2(x^2+3x)

=2(x^2+3x+9/4-9/4)

=2(x+3/2)^2-9/2>=-9/2

Dấu = xảy ra khi x=-3/2

c: =x^2-x+1/4-1/4

=(x-1/2)^2-1/4>=-1/4

Dấu = xảy ra khi x=1/2

14 tháng 12 2017

X x 72,2 - X x 62,2 = 201,6

X x ( 72,2 -62,2 ) = 201,6

X x 10 = 201,6

       X = 201,6 : 10

       X = 20,16

14 tháng 12 2017

Bn ơi bn làm như thế nào nào mà mk ko hiểu tí nào cả. Lúc đầu kết quả là 201,6 nhưng đến sau cùng thì kết qur là 20,16 là như thế nào vậy.

a: Ta có: \(A=x^2-7x+11\)

\(=x^2-2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{5}{4}\)

\(=\left(x-\dfrac{7}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{7}{2}\)

b: ta có: \(A=9x^2+6x+11\)

\(=9x^2+6x+1+10\)

\(=\left(3x+1\right)^2+10\ge10\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{3}\)

7 tháng 10 2021

T có A=\(\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\)

Áp dụng Bđt cô si

Taco\(A=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\dfrac{3}{\sqrt{x}}.\sqrt{x}}=2\sqrt{3}\)

Vậy\(Min_A=2\sqrt{3}\)

Dấu '=' xảy ra <=>x=0

7 tháng 10 2021

nhưng mak sai chỗ dấu '=" cay vcl

 

8 tháng 5 2019

1) \(3x^2-4x-7=0\)

\(\Leftrightarrow3x^2+3x-7x-7=0\)

\(\Leftrightarrow3x\left(x+1\right)-7\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)

Vậy....

8 tháng 5 2019

2) \(x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)

Vậy....

31 tháng 12 2017

A = (x^4-2x^2+1)+(3x^2-6x+3)+5

   = (x^2-1)^2+3.(x-1)^2+5 >= 5 

Dấu "=" xảy ra <=>  x^2-1=0 và x-1=0 <=> x=1

Vậy Min A = 5 <=> x=1

k mk nha

1 tháng 1 2018

A=\(x^4+x^2-6x+9\)

\(=\left(x^4-2x^2+1\right)\left(3x^2-6x+3\right)+5\)

\(=\left[\left(x^2\right)^2-2x^2.1+1^2\right]+3.\left(x^2-2x+1\right)+5\)

\(=\left(x^2-1\right)^2+3.\left(x-1\right)^2+5\ge5\)

Min A=5 khi \(\hept{\begin{cases}x^2-1=0\\x-1=0\end{cases}}\)=> x = 1