K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

T có A=\(\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\)

Áp dụng Bđt cô si

Taco\(A=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\dfrac{3}{\sqrt{x}}.\sqrt{x}}=2\sqrt{3}\)

Vậy\(Min_A=2\sqrt{3}\)

Dấu '=' xảy ra <=>x=0

7 tháng 10 2021

nhưng mak sai chỗ dấu '=" cay vcl

 

27 tháng 12 2021

a) ĐKXĐ : \(3\le x\le7\)

Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)

Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)

 

27 tháng 12 2021

Max và min chứ có ngu đến mức k bt lm cái đó đâu

7 tháng 7 2021

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)

\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)

Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)

 

12 tháng 9 2023

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)

\(=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\) khi 

\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)

\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)

\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)

5 tháng 11 2021

giê ơt nha bn

9 tháng 3 2022

k dễ đâu bạn ơi =))))

7 tháng 11 2017

A= \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

=\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

=\(\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)

\(\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|\)

=2.

dấu = khi và chỉ khi \(\left(\sqrt{x-1}+1\right).\left(1-\sqrt{x-1}\right)=0\)

5 tháng 11 2021

=0 nha bn

11 tháng 8 2017

\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)

\(\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-\sqrt{x-1}\right)\left(\sqrt{x-1}+1\right)\ge0\Leftrightarrow0\le x\le2\)

Vậy \(A_{min}=2\) tại \(0\le x\le2\)

5 tháng 11 2021
Ìyfkfebeheibeyekeojdueb

a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)