Tính giá trị của biểu thức
x^2+1/3x+1/36 tại x=35/6
x^2-y^2+2y-1 tại x=100 và y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)B=3x3 -2y3-6x2y2+xy
B=(3x3-6x2y2)+(xy-2y3)
B=3x2(x-2y2)+y(x-2y2)
B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)
b)C= 2x+xy2-x2y-2y
C=(2x-2y)+(xy2-x2y)
C=2(x-y)-xy(x-y)
C=(2-xy)(x-y)
tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)
a, \(A=\left(x+2y\right)^2-x+2y\)
Thay x = 2 ; y = -1 ta được
\(A=\left(2-2\right)^2-2-2=-4\)
b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)
Thay x = 1 vào B ta được \(B=3+8-1=10\)
c, Thay x = 1 ; y = -1 ta được
\(C=3,2.1.\left(-1\right)=-3,2\)
d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được
\(D=3.9-5\left(-1\right)+1=27+5+1=33\)
thay x=2,y=-1 vào biểu thức A ta có;
A=(2+2.(-1)^2-2+2.(-1)
A=(2+-2)^2-2+-2
A=0-2+-2
A=-4
b)
(x^2+4)(x-1)=0
suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)
(+)x-1=0
x =1
thay x=1 vào biểu thức B ta có;
B=3.1^2+8.1-1
B=3.1+8-1
B=3+8-1
B=10
c)thay x=1 và y=-1 vào biểu thức C ta có;
C=3,2.1^5.(-1)^3
C=3,2.1.(-1)
C=(-3,2)
d)giá trị tuyệt đối của 3=3 hoặc (-3)
TH1;thay x=3:y=-1 vào biểu thức d ta có;
D=3.3^2-5.(-1)+1
D=3.9-(-5)+1
D=27+5+1
D=33
1/
a, \(4x^4+1=4x^4+4x^2+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)
b, \(4x^4+y^4=4x^4+4x^2y^2+y^4-4x^2y^2=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+2xy+y^2\right)\left(2x^2-2xy+y^2\right)\)
c, \(x^4+324=x^4+36x^2+324-36x^2=\left(x^2+18\right)^2-\left(6x\right)^2=\left(x^2+6x+18\right)\left(x^2-6x+18\right)\)
2/
a, \(x^2+\frac{1}{3}x+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2=\left(\frac{35}{6}+\frac{1}{6}\right)^2=6^2=36\)
b, \(x^2-y^2+2y-1=x^2-\left(y-1\right)^2=\left(x+y-1\right)\left(x-y+1\right)=\left(100+1-1\right)\left(100-1+1\right)=100.100=10000\)
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
a, Thay x = 1/2 ; y = -1/3 ta được
\(A=\dfrac{3.1}{8}\left(-\dfrac{1}{3}\right)+\dfrac{6.1}{4}.\left(\dfrac{1}{9}\right)+\dfrac{3.1}{2}\left(-\dfrac{1}{3}\right)^3\)
\(=-\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{3}{2\left(-27\right)}=-\dfrac{7}{72}\)
b, Thay x = -1 ; y = 3 ta được
\(B=9+\left(-1\right).3-1+27=32\)
bạn thay chỗ nào x là \(\dfrac{1}{2}\) còn chỗ nào y là \(\dfrac{-1}{3}\)nhé
còn như là 3\(x^3\)y thì thành là 3.\(x^3\).y nhé
mk lười nên ko giải ra cho bạn được
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
Câu 1 :
\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)
\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)
\(=3x^2+12x-63-3x-12=3x^2+9x-75\)
Thay x = 1/2 vào ta được
\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)
Câu 2 :
\(5x^2+5xy+5x=5x\left(x+y+1\right)\)
Thay x = 60 ; y = 50 ta được
\(300\left(60+50+1\right)=33300\)
Câu 3 :
\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)
Thay x = 10 ; y = 1/2 ta được
\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)
1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)
\(=3x^2+12x-63+x^2+2\)
\(=4x^2+12x-61\)
\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)
2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)
3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)
Thay x = 35/6 vào biểu thức trên ta có :
\(\left(\frac{35}{6}\right)^2+\frac{1}{3}.\frac{35}{6}+\frac{1}{36}=\frac{1225}{36}+\frac{35}{18}+\frac{1}{36}=36\)
Thay x = 100 ; y = 1 vào biểu thúc trên ta có :
\(100^2-1^2+2.1-2=10000-1+2-2=9999\)
Thay \(x=\frac{35}{6}\)vào biểu thức trên ta có :
\(\left(\frac{35}{6}\right)^2+\frac{1}{3}\cdot\frac{35}{6}+\frac{1}{36}\)
\(=\frac{1225}{36}+\frac{35}{18}+\frac{1}{36}=\frac{1225}{36}+\frac{70}{36}+\frac{1}{36}=\frac{1296}{36}=36\)
Thay x = 100,y = 1 vào biểu thức trên ta có :
1002 - 12 + 2.1 -1 = 1002 - 1 + 2 - 1 = 1002 - 1 + 1 = 1002 = 10000