Cho \(\Delta\)ABC đều , trên tia đối AB,AC lấy AM=AN. D trung điểm AN, F trung điểm AB, E trung điểm MC
1) Chứng minh: MNCB là hình thang cân
2) \(\Delta\)DEF đều
Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMBC có
E là trung điểm của AB
E là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM//BC
a: Xét tứ giác ABCM có
D là trung điểm của AC
D là trung điểm của BM
Do đó: ABCM là hình bình hành
Suy ra: AM//BC và AM=BC
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN
Xét ΔAMD và ΔAND có
AM=AN
\(\widehat{MAD}=\widehat{NAD}\)
AD chung
Do đó: ΔAMD=ΔAND
=>\(\widehat{AMD}=\widehat{AND}\)
mà \(\widehat{AMD}=90^0\)
nên \(\widehat{AND}=90^0\)
=>DN\(\perp\)AC
c: Xét ΔKCD và ΔKNE có
KC=KN
\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)
KD=KE
Do đó: ΔKCD=ΔKNE
d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Ta có: ΔKCD=ΔKNE
=>\(\widehat{KCD}=\widehat{KNE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên NE//DC
=>NE//BC
ta có: NE//BC
MN//BC
NE,MN có điểm chung là N
Do đó: M,N,E thẳng hàng
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng
xét tam giác EAB và tam giác DAC có :
AB=AC ( tam giác ABC cân tại A )
góc EAB = góc DAC (đối đỉnh )
EA=AD (cmt)
-> tam giác EAB=tam giác DAC ( c.g.c)
-> góc EBA = góc DCA ( cặp góc tương ứng )
-> ED=DC ( cặp cạnh tương ứng )
*) tam giác ABC cân tại A -> góc B = góc C
mà góc EBA=góc DCA -> góc EBC= góc DCB
-> tan giác IBC cân tại I -> IB=IC
**) IB=IC ( cmt )
mà EB=DC
-> ID=IE
tam giác AED có AE=AD
-> tam giác AED cân tại A -> góc AED = góc EDA (1)
góc B = góc C (cmt) (2)
góc EAD = góc BAC ( đối đỉnh ) (3)
từ (1), (2), (3) -> góc AED = góc ACB
mà 2 góc ở vị trí so le trong -> ED//BC
ED cắt IA tại H
xét tam giác IEA và tam giác IDA (cm tương tự ) 2 tam giác = nhau theo trường hợp cạnh góc cạnh
-> I,H,A thẳng hàng (4)
vì ED//BC .
M là trung điểm của BC -> M cũng là trung điểm của ED
-> H , A , M thằng hàng (5)
từ (4) và (5) -> I ,A,M thẳng hàng
Bài làm:
a) Vì AM = AN và \(\widehat{MAN}=\widehat{BAC}=60^0\) (đối đỉnh)
=> Tam giác AMN đều
=> \(\widehat{MNA}=60^0=\widehat{ACB}\)
Mà 2 góc này ở vị trí so le trong
=> MN // BC
=> Tứ giác MNCB là hình thang
Lại có \(\hept{\begin{cases}AM=AN\\AB=AC\end{cases}\Rightarrow}AM+AB=AN+AC\)
\(\Rightarrow MB=NC\)
Vì MB,NC là 2 đường chéo hình thang MNCB
=> MNCB là hình thang cân
b) Nối M với D, C với F
Vì D,F là trung điểm của AN,AB
=> MD,CF là 2 đường trung tuyến của tam giác AMN và ABC
Mà 2 tam giác này đều
=> \(\hept{\begin{cases}MD\perp NC\left(\perp NA\right)\\CF\perp BM\left(\perp AB\right)\end{cases}}\)
=> Tam giác CDM và tam giác CFM vuông tại D,F
Mà DE,FE là 2 đường trung tuyến ứng với cạnh huyền của 2 tam giác vuông nói trên
=> \(DE=FE=\frac{1}{2}MC\left(1\right)\)
Vì D,F là trung điểm của AN,AB
=> DF là đường trung bình của tam giác ANB
=> \(DF=\frac{1}{2}NB\left(2\right)\)
Mà NB = MC ( MNCB là hình thang cân ) nên kết hợp với (1) và (2)
=> \(DF=FE=ED\)
=> Tam giác DEF đều