Cho a,b,c dương.
CMR: \(CyC\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}\le3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết, ta có: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Áp dụng BĐT AM - GM cho 5 số, ta được: \(\hept{\begin{cases}a.a.a.b.b\le\frac{a^5+a^5+a^5+b^5+b^5}{5}=\frac{3a^5+2b^5}{5}\\b.b.b.a.a\le\frac{b^5+b^5+b^5+a^5+a^5}{5}=\frac{3b^5+2a^5}{5}\end{cases}}\)
\(\Rightarrow\frac{5\left(a^5+b^5\right)}{5}\ge a^2b^2\left(a+b\right)\)hay \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
\(\Rightarrow\frac{1}{\sqrt{a^5+b^5}}\le\frac{1}{ab\sqrt{a+b}}\)(1) .
Tương tự, ta có: \(\frac{1}{\sqrt{b^5+c^5}}\le\frac{1}{bc\sqrt{b+c}}\)(2); \(\frac{1}{\sqrt{c^5+a^5}}\le\frac{1}{ca\sqrt{c+a}}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(VT=\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\)()
Xét \(\left(\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\right)^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\right)\)\(=\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\Rightarrow\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(2)
Từ (1) và (2) suy ra \(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(đpcm)
Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)
\(VT=2\Sigma_{cyc}a^2b+\Sigma_{cyc}\frac{1}{ab^2}=\Sigma\left(a^2b+a^2b+\frac{1}{ab^2}\right)\ge3\left(a+b+c\right)=9\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)
Áp dụng cosi ta có \(a.a.a.b.b\le\frac{3a^5+2b^5}{5};b.b.b.a.a\le\frac{3b^5+2a^5}{5}\)
=> \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
Khi đó
\(VT\le\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}}\)
Áp dụng BĐT buniacoxki ta có :
\((\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}})^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b^2\left(a+b\right)}+\frac{1}{c^2\left(b+c\right)}+...\right)\)
Mà 1/a^2+1/b^2+1/c^2=1(giả thiết)
=> \(VT\le VP\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=can(3)
giải ngắn gọn như sau
nhìn vào ta thấy đây là dạng phương trình mk quên tên gọi nó là j r, nhưng mk gọi nó là pt cân =
thì GTNN của pt khi a=b=c
=> ta dc 1+1+1 (thế vào )
=> dpcm
áp dụng bđt CBS dạng Engle ta có
\(+\hept{\begin{cases}\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\ge\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)\left(b^2+c^2\right)}=\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}\\\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\ge\frac{\left(b+c\right)^2}{\left(b^2+a^2\right)\left(c^2+a^2\right)}=\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}\\\frac{c^2}{c^2+b^2}+\frac{a^2}{a^2+b^2}\ge\frac{\left(a+b\right)^2}{\left(c^2+b^2\right)\left(a^2+b^2\right)}=\frac{\left(a+b\right)^2}{c^2+a^2+2b^2}\end{cases}}\)
\(3=\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\ge\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}+\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}+\frac{\left(c+a\right)^2}{c^2+a^2+2b^2}\)
đẳng thức xảy ra khi a=b=c>0