Tìm Min , Max nếu có
A=(x-1)(x+2)(x+3)(x+6) +2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn kiểm tra lại đề nhé! mình nghĩ A=(x+1)(x+2)(x+3)(x+6) thì đúng hơn
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
E = - \(x^2\) + 2\(x\) - 1
E = - (\(x^2\) - 2\(x\) + 1)
E = - (\(x\) - 1)2
(\(x\) - 1) ≥ 0 ⇒ - (\(x\) - 1)2 ≤ 0
Emax = 0 ⇔ \(x\) = 1
Để tìm các điểm tới hạn của hàm E, chúng ta cần tìm các giá trị của x tại đó đạo hàm của E bằng 0.
Lấy đạo hàm của E theo x, ta được:
E' = -2x + 2
Đặt E' bằng 0 và tìm x:
-2x + 2 = 0
-2x = -2
x = 1
Vậy điểm tới hạn của E là x=1.
Để tìm các điểm tới hạn của hàm C, chúng ta cần tìm các giá trị của x tại đó đạo hàm của C bằng 0.
Lấy đạo hàm của C theo x, ta được:
C' = (2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16)
Đặt C' bằng 0 và giải tìm x:
(2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16) = 0
Phương trình này khá phức tạp và không có nghiệm đơn giản. Nó sẽ yêu cầu thao tác đại số hơn nữa hoặc các phương pháp số để tìm các điểm tới hạn của C.
a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)
Vậy minA = 32 khi x = 7.
b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Địt con cụ
Dễ thấy x càng lớn thì A càng lớn
vậy ko có Max
Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)
\(=a^2-6a+6a-36+2020\)
\(=a^2+1984\ge1984\left(a^2\ge0\right)\)
Vậy Min A = 1984
Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)