K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

bạn kiểm tra lại đề nhé! mình nghĩ A=(x+1)(x+2)(x+3)(x+6) thì đúng hơn

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

31 tháng 7 2023

E = - \(x^2\) + 2\(x\) - 1                                           

E = - (\(x^2\) - 2\(x\) + 1)

E = - (\(x\) - 1)2

(\(x\) - 1) ≥ 0 ⇒ - (\(x\) - 1)2 ≤ 0

Emax = 0 ⇔ \(x\) = 1

 

31 tháng 7 2023

Để tìm các điểm tới hạn của hàm E, chúng ta cần tìm các giá trị của x tại đó đạo hàm của E bằng 0.

Lấy đạo hàm của E theo x, ta được:

E' = -2x + 2

Đặt E' bằng 0 và tìm x:

-2x + 2 = 0
-2x = -2
x = 1

Vậy điểm tới hạn của E là x=1.

Để tìm các điểm tới hạn của hàm C, chúng ta cần tìm các giá trị của x tại đó đạo hàm của C bằng 0.

Lấy đạo hàm của C theo x, ta được:

C' = (2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16)

Đặt C' bằng 0 và giải tìm x:

(2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16) = 0

Phương trình này khá phức tạp và không có nghiệm đơn giản. Nó sẽ yêu cầu thao tác đại số hơn nữa hoặc các phương pháp số để tìm các điểm tới hạn của C.

19 tháng 1 2018

a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)

\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)

Vậy minA = 32 khi x = 7.

b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)

minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

AH
Akai Haruma
Giáo viên
26 tháng 1

Lời giải:

$G=\frac{x^2+x+2}{2x^2-2x+3}$

$\Rightarrow G(2x^2-2x+3)=x^2+x+2$
$\Leftrightarrow x^2(2G-1)-x(2G+1)+(3G-2)=0(*)$

Vì $G$ tồn tại nên dấu "=" tồn tại, điều này có nghĩa là $(*)$ luôn có nghiệm.

$\Rightarrow \Delta=(2G+1)^2-4(2G-1)(3G-2)\geq 0$

$\Leftrightarrow -20G^2+32G-7\geq 0$

$\Leftrightarrow 20G^2-32G+7\leq 0$

$\Leftrightarrow \frac{16+\sqrt{116}}{20}\geq G\geq \frac{16-\sqrt{116}}{20}$

Vậy....

21 tháng 8 2016

Ta có : x3+x2-x-1

=(x3+x2)-(1x+1)

=x2(x+1)-1(x+1)

=(x2-1)(x+1)

=(x-1)(x+1)(x+1)

=(x-1)(x+1)2

22 tháng 8 2016

= (x+1)(x2 - 1) = 0

th1: x+1 =0 

x = -1

th2: x2 -1 =0 

x = +_ 1

kl: x=1; x = -1