Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 54cm, HC = 96cm. Gọi M là trung điểm của AB. Đường vuông góc với AC tại C cắt MH tại D, Tính độ dài các cạnh của tứ giác ACDM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính toán độ dài các cạnh của tứ giác ACDM, chúng ta cần áp dụng các định lý trong hình học tam giác và tứ giác. Với tam giác ABC vuông tại A, ta có: - Đường cao AH chia tam giác ABC thành hai tam giác AHM và AHB. - Vì M là trung điểm AB nên AM = MB = 1/2 AB. - Đường thẳng MH là đường vuông góc với AC tại C. Thông tin đã chọn: - HB = 54cm - HC = 96cm Ta sẽ tính độ dài còn lại: a) Tính độ dài AC: Sử dụng định lý Pythagoras trong tam giác vuông góc AHC: AC^2 = AH^2 + HC^2 AC^2 = (AH^2 + HB^2) + HC^2 (vì AH = AM + MH) AC = √(AH^2 + HB^2 + HC^2) AC = √(54^2 + 96^2) b) Tính độ dài DM: Vì M là trung điểm AB nên ta có DM = 1/2 AB = 1/2 AC. c) Tính độ dài AD: Áp dụng định lý Pythagoras trong tam giác AHM: AH^2 = AM^2 + HM^2 AH^2 = (AM^2) + (HM^2) AH = √(AM^ 2 + HM^2) AH = √((1/2 AB)^2 + HB^2) d) Tính độ dài CM: Vì M là trung điểm AB nên CM = 1/2 AC. Kết quả: Từ các tính toán trên, chúng ta có được độ dài các cạnh của tứ giác ACDM.
Để tính độ dài các cạnh của tứ giác ACDM, ta cần sử dụng định lý Pythagoras và các quy tắc về đường cao trong tam giác.
Vì tam giác ABC vuông tại A và đường cao AH, ta có: AH^2 + HB^2 = AB^2 Với HB = 54 cm, ta có: AH^2 + 54^2 = AB^2
Vì tam giác ABC vuông tại A và đường cao AH, ta có: AH^2 + HC^2 = AC^2 Với HC = 96 cm, ta có: AH^2 + 96^2 = AC^2
Vì M là trung điểm AB, ta có AM = MB = AB/2. Vì tam giác ABC vuông tại A, ta có AM = AB/2 = AC/2.
Vì M là trung điểm AB và đường thẳng MH vuông góc với AC tại C, ta có: MH^2 + HC^2 = MC^2 Với HC = 96 cm, ta có: MH^2 + 96^2 = (AC/2)^2
Vậy, ta có hệ phương trình: AH^2 + 54^2 = AB^2 AH^2 + 96^2 = AC^2 MH^2 + 96^2 = (AC/2)^2
Từ đó, ta có thể giải hệ phương trình để tính độ dài các cạnh của tứ giác ACDM.
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
a: AB=2AC
AB^2/AC^2=BH/HC
=>BH/HC=2^2=4
=>BH=4HC
AH^2=HB*HC
=>4HC^2=a^2
=>HC=a/2
=>BH=4*a/2=2a
BC=2a+a/2=5/2*a
\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)
\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)
b: AM=BC/2=5/4a
MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN