K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

71+65.=x-260

16 tháng 2 2018

Câu 1. S               Câu 2.Đ

Câu 3.S                Câu 4.Đ

27 tháng 8 2023

Để tính độ dài cạnh kề với cạnh có độ dài bằng 4, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.

Trong trường hợp này, ta có độ dài hai đường chéo là 6 và 8. Để tìm độ dài cạnh kề với cạnh có độ dài bằng 4, ta cần tìm độ dài cạnh còn lại của hình bình hành.

Áp dụng định lý Pythagoras, ta có: (độ dài cạnh kề)^2 + (độ dài cạnh kề)^2 = (độ dài đường chéo)^2

Đặt độ dài cạnh kề là x, ta có: x^2 + 4^2 = 6^2

Giải phương trình trên, ta có: x^2 + 16 = 36 x^2 = 36 - 16 x^2 = 20 x = √20

Vậy độ dài cạnh kề với cạnh có độ dài bằng 4 là √20.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Ta có: Bình phương độ dài đường chéo của một hình chữ nhật là: \({5^2} + {8^2} = 25 + 64 = 89\)

Độ dài đường chéo của một hình chữ nhật là: \(\sqrt {89}  = 9,43398...\)(dm)

Làm tròn kết quả này đến hàng phần mười, ta được: 9,4 dm

Chú ý: Độ dài đường chéo của một hình chữ nhật bằng căn bậc hai số học của tổng các bình phương độ dài hai cạnh của nó

DD
17 tháng 7 2021

Xét hình bình hành \(ABCD\)có \(O\)là giao điểm của \(AC\)và \(BD\).

Khi đó \(O\)là trung điểm của \(AC\)và \(BD\).

Độ dài hai đường chéo tỉ lệ với độ dài hai cạnh liên tiếp nên \(\frac{BD}{AC}=\frac{AB}{AD}\Leftrightarrow\frac{DA}{OA}=\frac{AB}{OB}\).

Xét tam giác \(DAB\)và tam giác \(AOB\)có: 

\(\widehat{DBA}=\widehat{ABO}\)(góc chung) 

\(\frac{DA}{AO}=\frac{AB}{OB}\)(cmt)

Suy ra \(\Delta DAB~\Delta AOB\left(c.g.c\right)\).

suy ra \(\widehat{AOB}=\widehat{DAB}\)(hai góc tương ứng) 

Ta có đpcm.

7 tháng 7 2016

rong hbh ABCD, xét tam giác abc 
(1): ac^2 = ab^2 + bc^2- 2.ab.bc.cosB 

=> ab^2 + bc^2=ac^2 + 2.ab.bc.cosB 

(2): vì da=bc+. da^2 + cd^2 =bc^2 +cd^2 

tương tự (1) ta có bc^2 + cd^2 = bd^2+2.bc.cd.cosC 

từ (1) và (2), ta có ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 + 2ab.bc.cosB + 2bc.cd.cosC 

vì: 
- góc B+C=180 => cosC = -cosB 
- ab=cd 
=>2ab.bc.cosB + 2bc.cd.cosC =0 

Vậy => ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 (đpcm)

8 tháng 7 2016

Bạn Carthrine ơi, mình bảo là giải bằng toán lớp 8 mà

25 tháng 2 2018

CÓ AI KẾT BẠN VỚI MÌNH KO

DORAKID tự nhiên xông vào làm gì?