K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

Ta có : \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{a^3b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{a^2b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{ab}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{1}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{1}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{1}\right)\)

=> \(P=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2+2a\right)-6a}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a+b\right)^2}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}+\frac{6}{\left(a+b\right)^4}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}=\frac{2a^2+4ab+2b^2}{\left(a+b\right)^2}-\frac{a^2+b^2}{\left(a+b\right)^2}\)

=> \(P=2-\frac{a^2+b^2}{\left(a+b\right)^2}=1+\frac{-2}{\left(a+b\right)^2}\)

28 tháng 9 2017

\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)

\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)

\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)

\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)

\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

26 tháng 7 2017

Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1

Ta có : a+b-c/c=1  => a+b-c=c  => a+b+c=3c   (1)

Ta có : b+c-a/a=1  => b+c-a=a  => a+b+c=3a   (2)

Ta có : c+a-b/b=1  => c+a-b=b  => a+b+c=3b   (3)

Từ (1);(2);(3)   => 3c=3a=3b  => a=b=c  => b/a=1 ; a/c=1 ; c/b=1

=> B= (1+b/a)(1+a/c)(1+c/b)  = (1+1)(1+1)(1+1) = 2.2.2 = 8

21 tháng 11 2019

=8

8 8 cái địt mẹ mày

16 tháng 3 2017

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

25 tháng 3 2018

thi hsg co cao khong

25 tháng 3 2018

dang no giong bai bdt vap LHP chuyen nam 2017-2018