K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

\(\frac{1}{2}^{3x-1}=\frac{1}{32}\)

\(\Leftrightarrow\frac{1}{2}^{3x-1}=\frac{1}{2}^5\)

\(\Leftrightarrow3x-1=5\)

\(\Leftrightarrow3x=6\)

\(\Leftrightarrow x=2\)

3 tháng 8 2020

Tìm x

\(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)

\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)

\(\Rightarrow3x-1=5\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Vậy \(x=2\).

21 tháng 10 2020

\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)

\(\Rightarrow3x-1=5\)

3x \(=6\)

x \(=2\)

Vậy x=2

17 tháng 7 2017

a, (3x+1)3=-27                    b, (1/2.2x+4.2x ) = 9.25

=> ( 3x+1)3=(-3)3                    => [ 2x.(1/2+4 ) ]=9.25                                c, ( 3x-2)5= - 243

=> 3x+1=-3                       => 2x.9/2 = 225                                           => ( 3x-2)5=(-3)5

=>3x=-4                            => 2x        = 225:9/2                                     => 3x-2=-3

=>  x = -4/3                       => 2x       = 50 (ko có trường hợp nào )         => 3x= -1

                                                                                                            => x=-1/3

                                        

31 tháng 12 2018

a) \(=\frac{3x+2}{\left(3x+2\right).\left(3x-2\right)}-\frac{12x-8}{\left(3x+2\right).\left(3x-2\right)}-\frac{-3x+6}{\left(3x-2\right).\left(3x+2\right)}\)

\(b,\frac{x^2+1}{\left(x-1\right).\left(x^2+1\right)}-\frac{x.\left(x^2-1\right).\left(x-1\right)}{\left(x-1\right).\left(x^2+1\right)}.\left(\frac{1}{\left(x-1\right)^2}-\frac{1}{\left(x+1\right).\left(x-1\right)}\right)\)

p/s: hướng dấn cách tách thoy, tự làm nha~~lazy

31 tháng 12 2018

a )

\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}=0\)

\(\Leftrightarrow\frac{\left(3x+2\right)-4.\left(3x-2\right)}{9x^2-4}=\frac{3x-6}{4-9x^2}\) ( * ) 

Đkxđ : \(\hept{\begin{cases}9x^2-4\ne0\\4-9x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\pm\sqrt{\frac{4}{9}}\\x\ne\pm\sqrt{\frac{4}{9}}\end{cases}}\Leftrightarrow x\ne\pm\frac{2}{3}\)

( * ) => \(\left(4-9x^2\right).\left[\left(3x+2\right)+\left(-12x+8\right)\right]=\left(9x^2-4\right).\left(3x-6\right)\)

\(\Leftrightarrow\left(4-9x^2\right).\left(-9x+10\right)=\left(9x^2-4\right).\left(3x-6\right)\)

\(\Leftrightarrow-36x+40+81x^3-90x^2=27x^3-54x^2-12x+24\)

\(\Leftrightarrow54x^3-36x^2-24x+16=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\left(loai\right)\\x=-\frac{2}{3}\left(loai\right)\end{cases}}\)

Vậy : phương trình vô nghiệm 

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: x > 1

\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)

e, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)

f, Điều kiện: x > 4

\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)